Motor Control Blockset™
Getting Started Guide

<

MATLAB&SIMULINK

R2022a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Motor Control Blockset™ Getting Started Guide
© COPYRIGHT 2020-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2020 Online only New for Version 1.0 (Release R2020a)

September 2020 Online only Revised for Version 1.1 (Release R2020b)
March 2021 Online only Revised for Version 1.2 (Release R2021a)
September 2021 Online only Revised for Version 1.3 (Release R2021b)

March 2022 Online only Revised for Version 1.4 (Release R2022a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Product Overview

1]

Motor Control Blockset Product Description 1-2

Model Configuration Parameters

2|

Model Configuration Parameters
Solver Configuration i
ADC Interface Configuration
PWM Interface Configuration
Hall Sensor Interface Configuration
Quadrature Encoder Interface Configuration
Serial Communication Interface Configuration

NNN[:JNNN
Ul WNNDN

Estimate Control Gains from Motor Parameters

3|

Estimate Control Gains and Use Utility Functions 3-2
Field-Oriented Control Autotuner 3-2
Simulink Control Design i 3-3
Model Initialization Script 3-3

Implement Motor Speed Control by Using Field-Oriented
Control (FOC)

4

Field-Oriented Control (FOC) i, 4-3
Permanent Magnet Synchronous Motor (PMSM) 4-3
AC Induction Motor (ACIM) i e 4-4
Six-Step Commutation 4-5
Direct Torque Control (DTC) 4-7
Flux and Torque Estimation 4-7

iii

iv

Contents

Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset

... 4-10
Tune Control Parameter Gains in Hardware and Validate Plant 4-18
Tune PI Controllers Using Field Oriented Control Autotuner 4-28
Field-Oriented Control of PMSM Using Hall Sensor 4-38
Field-Oriented Control of PMSM Using Quadrature Encoder 4-43
Field-Weakening Control (with MTPA) of PMSM 4-48
Sensorless Field-Oriented Control of PMSM 4-61
Field-Oriented Control of PMSM Using SI Units 4-67
Hall Offset Calibration for PMSM Motor 4-71
Monitor Resolver Using Serial Communication 4-75
Quadrature Encoder Offset Calibration for PMSM Motor 4-80
Model Switching Dynamics in Inverter Using Simscape Electrical 4-85
Control PMSM Loaded with Dual Motor (Dyno) 4-95
Field-Oriented Control of Induction Motor Using Speed Sensor 4-100
Sensorless Field-Oriented Control of Induction Motor 4-104
Tune PI Controllers Using Field Oriented Control Autotuner Block on

Real-Time Systems i, 4-108
Six-Step Commutation of BLDC Motor Using Sensor Feedback 4-119
Hall Sensor Sequence Calibration of BLDC Motor 4-124
Position Control of PMSM Using Quadrature Encoder 4-130
Integrate MCU Scheduling and Peripherals in Motor Control Application

.. 4-134
Partition Motor Control for Multiprocessor MCUs 4-143
Frequency Response Estimation of PMSM Using Field-Oriented Control

.. 4-148
MATLAB Project for FOC of PMSM with Quadrature Encoder 4-163
Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-

Pulse Methods 4-170
Algorithm-Export Workflows for Custom Hardware 4-187

Estimate PMSM Parameters Using Recommended Hardware 4-189

Field-Oriented Control of PMSM Using Reinforcement Learning 4-199
Estimate Induction Motor Parameters Using Recommended Hardware
.. 4-206

Estimate PMSM Parameters Using Custom Hardware 4-213
Tune PI Controllers (in Field-Weakening Control Mode) Using FOC

AutotunerBlock 4-221
Field-Oriented Control (FOC) of PMSM Using Hardware-In-The-Loop

(HIL) Simulation 4-232
Direct Torque Control of PMSM Using Quadrature Encoder or Sensorless

Flux Observer i, 4-240
Determine Power Losses and THD for PWM Modulation Methods 4-244

Run Field Oriented Control of PMSM Using Model Predictive Control 4-248

Estimate Motor Parameters Using Motor Control Blockset
Parameter Estimation Tool

S|

Estimate Motor Parameters Using Motor Control Blockset Parameter
Estimation Tool 5-2

Concepts

6/

Host-Target Communication
HostModel
Target Model e
Serial Communication Blocks
Fast Serial Data Monitoring
Find Communication Port
Add Debug Signals from Target Hardware

cncncnclncncncn
b WWNNDN

Open-Loop and Closed-Loop Control 6-13
Open-Loop Motor Control 6-13
Closed-Loop Motor Control 6-14
Open-Loop to Closed-Loop Transitions 6-15

Current Sensor ADC Offset and Position Sensor Calibration 6-17
Current Sensor ADC Offset Calibration 6-17

Position Sensor Offset Calibration for Quadrature Encoder and Hall Sensor

... 6-17
Per-Unit System 6-20
Per-Unit System 6-20
Per-Unit System and Motor Control Blockset 6-20

Why Use Per-Unit System Instead of Standard SI Units 6-22
Program Control Flow of Motor Control Blockset Examples 6-23
ADC-PWM Synchronization e, 6-24
Motor Speed and Position Measurement 6-25
Serial Communication e 6-25

Hardware Connections

7

Hardware Connections 7-2
F28069 control card configuration 7-2
LAUNCHXL-F28069M and LAUNCHXL-F28379D Configurations 7-5
TMDSRSLVR C2000 Resolver to Digital Conversion Kit 7-10

Algorithm Export Workflows for Custom Hardware

8|

Open-Loop Control and ADC Offset Calibration 8-2
Generate Code For Control Algorithm Using Embedded Coder 8-2
Obtain C Code For Hardware Driversuunnn. 8-6
Integrate Control Algorithm Code With Driver Code 8-6
Deploy Integrated Code to Hardware 8-7
Control Motor Using Host Simulink Model 8-7

Quadrature Encoder Offset Calibration 8-11
Generate Code For Control Algorithm Using Embedded Coder 8-11
Obtain C Code For Hardware Driversc.uuuuuu.. 8-15
Integrate Control Algorithm Code With Driver Code 8-15
Deploy Integrated Code to Hardware 8-16
Control Motor Using Host Simulink Model 8-16

Field-Oriented Control 8-18
Generate Code For Control Algorithm Using Embedded Coder 8-18
Obtain C Code For Hardware Drivers 8-23
Integrate Control Algorithm Code With Driver Code 8-23
Deploy Integrated Code to Hardware 8-24
Control Motor Using Host Simulink Model 8-24

Contents

Modeling Guidelines for Motor Control Applications

9

Create and Validate Model for Motor Control System 9-2

Using Hall Validity and Hall Decoder Blocks

10|

How to Use Hall Validity and Hall Decoder Blocks 10-2
Configure eCAP PIns i e 10-2
Generate Interrupts for Hall Value Transitions 10-3
Service Generated Interrupts 10-5
Compute Electrical Position and Mechanical Speed 10-10

Product Overview

1 Product Overview

Motor Control Blockset Product Description

Design and implement motor control algorithms

Motor Control Blockset provides Simulink® blocks for creating and tuning field-oriented control and
other algorithms for brushless motors. Blocks include Park and Clarke transforms, sensorless
observers, field weakening, a space-vector generator, and an FOC autotuner. You can verify control
algorithms in closed-loop simulation using the motor and inverter models included in the blockset.

The blockset parameter estimation tool runs predefined tests on your motor hardware for accurate
estimation of stator resistance, d-axis and g-axis inductance, back EME inertia, and friction. You can
incorporate these motor parameter values into a closed-loop simulation to analyze your controller
design.

Reference examples show how to verify control algorithms in desktop simulation and generate
compact C code that supports execution rates required for production implementation. The reference
examples can also be used to implement algorithms for motor control hardware kits supported by the
blockset.

1-2

Model Configuration Parameters

2 Model Configuration Parameters

Model Configuration Parameters

Update the configuration parameters for a Simulink model that you create, before simulating or
deploying the model to the controller.

In the Simulink window, click Hardware Settings in the HARDWARE tab to open the Configuration
Parameters dialog box and select the target hardware in the Hardware board field.

SIMULATION DEBUG MODELING FORMAT HARDWARE n
Hardware Board @ i Lﬁ

T1 Piccolo F2806x = Hardware Control Montor

Settings Panel & Tune v

ACYLA LA
HARDWAR

m
[%4]

OAR

D
U

o
0
m
9
1>
r = |
m

R N HADDWARE
RUN ON HARDWARE

Solver Configuration

In the Solver tab of the Configuration Parameters dialog box, for a fixed-step discrete solver, type
auto in the Fixed-step size (fundamental sample time) field.

&4 Configuration Parameters: mcb_pmsm_foc_hall_f28379d/Configuration (Active) — O *

Q

Solver

Simulation time

Data Import/Export

Math and Data Types
» Diagnostics
Hardware Implementation

Model Referencing Type: |Fixed-step v | Solver: |discrete (no continuous states) h
Simulation Target

» Code Generation ¥ Solver details

» Coverage

2-2

Start time: (0.0 Stop time: |8

Saolver selection

Fixed-step size (fundamental sample time): |auto

ADC Interface Configuration

If you connect analog inputs (current or voltage sensors) to the hardware board, configure the related

ADC parameters in the Configuration Parameters dialog box by using these steps:

1 Open the Hardware Implementation tab.

2 Set the ADC clock prescaler and check the ADC clock frequency. Ensure that the displayed ADC
clock frequency is less than the maximum value specified in the device datasheet.

This example shows the ADC configuration for LAUNCHXL-F28379D board. The maximum operating
frequency of ADCCLK for TMS320F28379D targets is 50 MHz.

Model Configuration Parameters

Hardware board settings

¥ Target hardware resources

Groups

Build options Select the CPU core which controls ADC_A module: | Auto
Clocking

ADC A ADC clock prescaler (ADCCLEK): [SYSCLKOUT/S.0
_ﬂl[}c:B ADC clock frequency in MHz: 40

ADC_C Offset: |AdcaRegs ADCOFFTRIM bit. OFFTRIM
i INT pulse control: |Late interrupt pulse

CMPS55

DAC S0OC high priority: |All in round robin mode

ePWM ADCEXTSOC external pin; |GPIO0

eCAP

—fMrmn

PWM Interface Configuration

If you connect PWM outputs from target device to the inverter, configure the related PWM
parameters in the Configuration Parameters dialog box by using the following steps:

1 Open the Hardware Implementation tab.

2 Set the ePWM clock divider to SYSCLKOUT/1.

3 Update the following PWM pin assignment fields.

ePWM pin settings Property

PWM1A pin assignment Gate pulse for Phase-A high-side transistor
PWM1B pin assignment Gate pulse for Phase-A low-side transistor
PWM2A pin assignment Gate pulse for Phase-B high-side transistor
PWM2B pin assignment Gate pulse for Phase-B low-side transistor
PWM3A pin assignment Gate pulse for Phase-C high-side transistor
PWM3B pin assignment Gate pulse for Phase-C low-side transistor

2-3

2 Model Configuration Parameters

Hardware board settings

¥ Target hardware resources

Groups
Build options
Clocking
ADC A
ADC B
ADC _C
ADC D
CMPSS
DAC
ePWM
eCAF
e(lEP
I2C A
I2C B
SCLA
SCILB
i
SCLD
SPLA
SPLE
o 2 O
eCAN_A
eCAN B

Hall Sensor Interface Configuration

EPWM clock divider (EPWMCLKDIV): |SYSCLKOUT/

TZ1 pin assignment: |None

TZ2 pin assignment: |None

TZ3 pin assignment: |None

SYMCI pin assignment: |None

PWM1A pin assignment:
PWM1B pin assignment:
PWMZ2A pin assignment:
PWM2E pin assignment:
PWM3A pin assignment:
PWM3B pin assignment:

GPIO0
GPIO1
GPIO2
GPIO3
GPIO4

\GPIO5

PWM4A pin assignment:
PWMA4E pin assignment:
PWMbA pin assignment:
PWM5E pin assignment:
PWMGA pin assignment:
PWMEEB pin assignment;

GPIOG
GPIO7
GPI08
GPIOY
GPIO10
GPIO11

If you connect a Hall sensor to the hardware board, configure the related parameters in the
Configuration Parameters dialog box by using the following steps:

1 Open the Hardware Implementation tab.

2 Select the eCAP group under Hardware board settings > Target hardware resources.

3 Update the following ECAP pin assignment fields:

ECAP pin assignment field Field value
ECAP1 pin assignment Hall A
ECAP2 pin assignment Hall B
ECAP3 pin assignment Hall C

2-4

Model Configuration Parameters

The following example shows the eCAP configuration for a Hall sensor connected to DRV8312 board
with a F28069 Piccolo MCU control card:

Solver

Data Import/Export
Math and Data Types
Diagnostics

Hardware Implementation
Model Referencing
Simulation Target

Code Generation
Coverage

Simscape

Simscape Multibody 1G
Simscape Multibody

Hardware board: |TI Piccolo F2806x

Code Generation system target file: ertilc

Device vendor: | Texas Instruments - | Device type: |C2000

¥ Device details

Hardware board settings

» Operating system/scheduler

¥ Target hardware resources

Groups

Build options
Clocking
ADC

COMP
eCAN_A
eCAP

ePWM

12C

ECAP1 pin assignment: [GPI024
ECAP2 pin assignment: |GPI025
ECAP3 pin assignment: |GPI0O26

Quadrature Encoder Interface Configuration

If you connect a Quadrature Encoder sensor to the hardware board, configure the related parameters
in the Configuration Parameters dialog box by using the following steps:

1 Open the Hardware Implementation tab.

2 Select the eQEP group under Hardware board settings > Target hardware resources.

3 Update the following EQEP pin assignment fields:

EQEP pin assignment field

Property

EQEP1A pin assignment

Quadrature Encoder Channel A

EQEP1B pin assignment

Quadrature Encoder Channel B

EQEP1I pin assignment

Quadrature Encoder Index

The following example shows the eQEP configuration for a quadrature encoder sensor connected to a
LAUNCHXL-F28379D board:

2-5

2 Model Configuration Parameters

& Configuration Parameters: rch_pmsm_foc_gep_f28379d/Configuration (Active) — | X
Salver Hardware board: | Tl Delfino F28379D LaunchPad -

Data Import/Export

Math and Data Types
» Diagnostics Device vendor: Texas Instruments - | Device type: C2000 -

Code Generation system target fila: grttlc

Hardware Implementation
Model Referencing
Simulation Target

» Code Generation

» Device details

Hardware board settings

» Coverage ¥ Target hardware resources
Groups
Build options EQEP1A pin assignment: |GPI020 |~
Clocking)) _
ADC_A EQEP1E pin assignment: |GPI1021 | -
ADC_B EQEP1S pin assignment: |[None | -
ADC_C EQEP1I pin assignment: | GPIO99 v
e EQEP2A pin assignment: |GPI1024 | -
DAC
aPWM EQEPZB pin assignment: | GPIO25 | -
eCAP EQEPZS pin assignment: | GPIO27 | -
eQEP EQEP2! pin assignment: |GPI026 B
12C_A))
12C_B EQEP3A pin assignment: | GPIO28 | -
SCILA EQEP3E pin assignment: | GPIO29 | -
SCI_B EQEP3S pin assignment: |GPI1030 -
e EQEP3I pin assignment: |GPI031 | -
SCILD

Serial Communication Interface Configuration

If you are generating code and using serial communication between host and target Simulink models,
configure the related parameters in the Configuration Parameters dialog box by using the following
steps:

1 Open the Hardware Implementation tab.

2 Select the SCI_A group under Hardware board settings > Target hardware resources.

3 Update the following SCI A settings:

SCI_A settings Property

Suspension mode Serial suspension mode
Number of stop bits Stop bits

Parity mode Parity

Model Configuration Parameters

Character length bits Data bits

Desired baud rate in bits/sec Serial communication baud rate
Pin assignment(Tx) Output pin for Serial Transmit
Pin assignment (Rx) Input pin for Serial Receive

For example, use the following SCI A configuration for a Hall sensor connected to a F28379D

LaunchPad board:
@ Configuration Parameters: mcb_pmsm_foc_hall_f2837%d/Configuration (Active) — O x>
|Q Search |
Solver Hardware board: |TI Delfino F28379D LaunchPad [+] =2

Data Import/Export
Math and Data Types
» Diagnostics Device vendor: Texas Instruments = | Device type: C2000 -
Hardware Implemeantation
Model Referencing
Simulation Target

Code Generation system target file: ert.tlc

» Device details

: Hardware board settings
» Code Generation

» Coverage ¥ Target hardware resources

Groups
Build options [] Enable loopback
Clocking S N o |F
ADC_A uspension mode: | ree_run | - |
ADC B Number of stop bits: |1 | v |
ADC_C Parity mode: |None | - |
e Character length bits: |8 | - |
DAC
ePWM Desired baud rate in bits/sec: |596 |
eCAP Baud rate prescaler (BRR = (3CIHBAUD << &) | SCILBAUD)): 4
sQEP Closest achievable baud rate (LSPCLK/(BRR+1)8) in bits/sec: 5000000
12C_A o
12¢_B Communication mode: |Raw_data | - |
SCLA [] Blocking mode
sCi B Data byte order: |Litt|e_Endian | - |
SCI_C } .

- Pin assignment({Tx): |GF’IO42 | - |
SCI_D
SPIA Pin assignment(Rx): |GPI043 [~]
SPI_B

2-7

Estimate Control Gains from Motor
Parameters

3 Estimate Control Gains from Motor Parameters

Estimate Control Gains and Use Utility Functions

Perform control parameter tuning for the speed and the torque control loops that are part of the
Field-Oriented Control (FOC) algorithm. Motor Control Blockset provides you with multiple methods
to compute the control loop gains from the system or block transfer functions that are available for
the motors, inverter, and controller:

* Use the Field Oriented Control Autotuner block.

* Use Simulink Control Design™.

* Use the model initialization script.

Motor,
inverter, and
target
parameters
FOC
autotuner
Control Control loop
execution time gains
Maodel Simulink®
initialization Control
Delays and per- script Design™

unit system
values

4

Field-Oriented Control Autotuner

The Field-Oriented Control Autotuner block of Motor Control Blockset enables you to automatically
tune the PID control loops in your Field-Oriented Control (FOC) application in real time. You can
automatically tune the PID controllers associated with the following loops (for more details, see “How
to Use Field Oriented Control Autotuner Block”):

* Direct-axis (d-axis) current loop

* Quadrature-axis (g-axis) current loop
* Speed loop

For each loop that the block tunes, the Field-Oriented Control Autotuner block performs the
autotuning experiment in a closed-loop manner without using a parametric model associated with
that loop. The block enables you to specify the order in which the block tunes the control loops. When
the tuning experiment runs for one loop, the block has no effect on the other loops. For more details
about FOC autotuner, see Field Oriented Control Autotuner and “Tune PI Controllers Using Field
Oriented Control Autotuner” on page 4-28.

3-2

Estimate Control Gains and Use Utility Functions

Simulink Control Design

Simulink Control Design enables you to design and analyze the control systems modeled in Simulink.
You can automatically tune the arbitrary SISO and MIMO control architectures, including the PID
controllers. You can deploy PID autotuning to the embedded software to automatically compute the
PID gains in real time.

You can find the operating points and compute the exact linearizations of the Simulink models at
different operating conditions. Simulink Control Design provides tools that let you compute the
simulation-based frequency responses without modifying your model. For details, see https://
www.mathworks.com/help/slcontrol/index.html.

Model Initialization Script

This section explains how the Motor Control Blockset examples estimate the control gains needed to
implement field-oriented control. For example, for a PMSM that is connected to a quadrature
encoder, these steps describe the procedure to compute the control loop gain values from the system
details by using the initialization script:

1 Open the initialization script (. m) file of the example in MATLAB®. To find the associated script
file name:

a Select Modeling > Model Settings > Model Properties to open the model properties
dialog box.

¥4 mch_pmsm_foc_qep_f28060m - Simulink

SIMULATION DEBUG MODELING FORMAT HARDWARE
/ Find « i T
@ = = ; © #)
Maodel ¥ Compare Madel Data Model Schedule 1T Model ; Insert Atomic
Advisor = 1} Environment = Editor Explarer Editor Settings * Subsystem Subsystem

eIV MO HESI {g Model Settings Ctrl+E
mech_pmsm_foc_gep_f28069m

® ™| mcb_pmsm_foc_gep_f28069m P

E Model Properties

o

b In the Model Properties dialog box, navigate to the Callbacks tab > InitFcn to find the
name of the script file that Simulink opens before running the example.

3-3

https://www.mathworks.com/help/slcontrol/index.html
https://www.mathworks.com/help/slcontrol/index.html

3 Estimate Control Gains from Motor Parameters

"

Model Properties: mcb_pmsm_foc_gep_f22069m @
Main Callbacks History Description External Data
Model callbacks Model initialization function:
PreLoadFcn mcb_pmsm_foc_gep_f28069m_data; I
PostLoadFon
InitFcn™
StartFcn
PauseFcn
ContinueFcn
StopFcn
PresaveFcn
PostSaveFcn
CloseFcn
OK Cancel Help Apply

2 This figure shows an example of the initialization script (. m) file.

3-4

Estimate Control Gains and Use Utility Functions

EDITOR PUBLISH
':E:' & E Lql Find Files Insert &l fx - D’ % _ (I:?
=l v fGoTew Comment % % #1 o
New Open Save |!Compare ele £ = Breakpoints Run Run and @Advance Run and
- - ~ = Print ¥ _{ Find = Indent - - Advance Time
FILE MNAVIGATE EDIT BREAKPOINTS RUM a
E | mch_pmsm_foc_gep_f2806%m_data.m ?‘{l +]
__1_ R R R g d b R e e |
2 % Model PMSM Field Criented Control
2 % Description Set Parameters for PMSM Field COriented Control
4 % File name mck pmsm foc gep f28065m data.m
5 % Copyright 2020 The MachWorks, Inc.
6
T %% Parameters needed for Offset computation are
g % target.PWM Counter Period - PWM counter value for epwm blocks
g % target.CPU fregquency — CPU freguency of the microcontroller
1d x Ts - Control sample time
11 % PU_System.N_base - Base speed for per unit conversion
12 % pmsm.p - Number pole palrs in the motor
13
14 % Other parameters are not mandatory for offset computation
15
16 %% Set PWM Switching frequmency
I = PWM_frequency = 20e3; %Hz // converter s/w freg
18 - T _pwm = 1/PWM_frequency; %3 // PWM switching time period
19
20 %% Set Sample Times
21 — Ts = T_pvwm; iszec S/ simulation time step for controller
22 = Tz simulink =T pwm/2; Esec S simulation time step for model simulation
23 - Ts_motor = T_pwm/2; %Sec S/ Simulation sample time
24 — Ts inverter = T_pwm."Z; isec S/ simulation time step for average value inverter
25 = Ts speed = 10*Ts; %5ec f{ Bample time for speed controller
26
27 %% Set data type for controller & code-gen
28 % dataType = fixdc(l,32,17): % Fixed point code-generation
2 datalype = 'single'; % Floating point code-gensration
30
20 %% System Parameters // Hardware parameters
32
33 - pmsm = mch SetPMSMMotorParameters ("ELY1T71D");
34 - pmsm. PositionOffset = 0.17;
35
36 %% Parameters below are not mandatory for offset computation
27
S8l = inverter = mch SetInverterParameters('DEVS312-CZ-KIT'")»
39
40 = inverter.ADCOffsetCalibEnable = 1; % Enable: 1, Disakle:0
41
42 — target = mck SetProcessorDetalls ('F22065M',PWM fregquency):
43
44 %% Derive Characteristics
45 — pmsm.N base = mck getBaseSpeed (pmsm, inverter); %rpm // Base speed of motor at given Vdc
48 % mcb_getCharacteristics (pmsm, inverter);
47
43 %% PU System details // Set base wvalues for pu conversion
449
50 — FO_System = mchk SetPUSystem(pmsm, inverter);
51
52 %% Controller design // Get ballpark wvalues!
a3
34 - FI params = mcb.internal.S5etControllerParameters (pmsm, inverter, PU System, T pwm,Ts,Ts_speed) :
55
o6 fUpdating delays for simulation
=l = PI params.delay Currents = int32 (Ts/Ts_simulink); 3-5
58 - PI_params.delay_Speed = intc32 th_speed/Ts_sim}Jlink}:
59
(14 % mch getControllnalysis (pmsm, inverter, PU System,PI params,Ts,Ts_speed):

3 Estimate Control Gains from Motor Parameters

3-6

3 Use the Workspace to edit the control variables values. For example, to update Stator resistance
(Rs), use the variable pmsm to add the parameter value to the Rs field.

Workspace

Mame = Value
1" dataType 'single’
I_LJ inverter Tx1 struct

t| Pl params Tx1 struct

.| pmsm Tx1 struct

LEIPU System Tx7 struct
HH PWM_freq... 20000
HH T _pwm 5.0000e-05
LEJ target 1x1 struct
HH Ts 5.0000e-05
HH Ts_inverter 2.5000e-05
HH Ts_motor 2.5000e-05
HH Ts_simulink 2.5000e-05
HHTs speed 5.0000e-04

|

| prmsm '»‘f|

11 struct with 17 fields

Field = Yalue
[medel Teknic-2310P"
E|E| &N ‘003
Hp 4
% Rs 03600 |
Ld 2.0000e-04
H Lq 2.0000e-04
HH 7.0616e-06
He 2.6360e-06
HH ke 4.6400
HH ke 0.2740
HH I_rated 7.1000
EE| M_max RO00
HH PositionOffset 0.1700
HH qEpslits 1000
HH Fluxpm 0.0064
HH T_rated 0.2724
HH N base 3902

4 The model initialization script associated with a target model calls these functions and sets up

the workspace with the necessary variables.

Estimate Control Gains and Use Utility Functions

Model Initialization Script

Function Called By Model
Initialization Script

Description

Script associated with a
target model

mcb_SetPMSMMotorParame
ters

Input to the function is the
type of PMSM (for example,
BLY171D).

The function populates a
structure named pmsm in the
MATLAB workspace, which is
used by the model.

It also computes the
permanent magnet flux and
rated torque for the selected
motor.

You can extend the function
by adding an additional
switch-case for a new motor.

This function also loads the
structure motorParam,
obtained by running
parameter estimation, to the
structure pmsm. If the
structure motorParam is not
available in the MATLAB
workspace, the function
loads the default parameters.

mcb SetACIMMotorParame
ters

Input to the function is the
type of AC induction motor
(for example, EM_Synergy).

The function populates a
structure named acim in the
MATLAB workspace, which is
used by the model.

You can extend the function
by adding an additional
switch-case for a new motor.

This function also loads the
structure motorParam,
obtained by running
parameter estimation, to the
structure acim. If the
structure motorParam is not
available in the MATLAB
workspace, the function
loads the default parameters.

3 Estimate Control Gains from Motor Parameters

3-8

Model Initialization Script

Function Called By Model
Initialization Script

Description

mcb_SetInverterParamet
ers

Input to the function is
inverter type (for example,
BoostXL-DRV8305).

The function populates a

structure named inverter
in the MATLAB workspace,
which is used by the model.

The function also computes
the inverter resistance for
the selected inverter.

You can extend the function
by adding an additional
switch-case for a new
inverter.

mcb SetProcessorDetail
s

Inputs to the function are
processor type (for example,
F28379D) and the Pulse-
Width Modulation (PWM)
switching frequency.

The function populates a
structure named target in
the MATLAB workspace,
which is used by the model.

The function also computes
the PWM counter period that
is a parameter for the ePWM
block in the target model.

You can extend the function
by adding an additional
switch-case for a new
processor.

mcb_getBaseSpeed

Inputs to the function are
motor and inverter
parameters.

The function computes the
base speed for PMSM.

Type help

mcb getBaseSpeed at the
MATLAB command window
or see section “Obtain Base
Speed” on page 3-16 for
more details.

Estimate Control Gains and Use Utility Functions

Model Initialization Script

Function Called By Model
Initialization Script

Description

mcb_SetPUSystem

Inputs to the function are
motor and inverter
parameters.

The function sets the base
values of the per-unit system
for voltage, current, speed,
torque, and power.

The function populates a
structure named PU_System
in the MATLAB workspace,
which is used by the model.

mcb.internal.SetContro
1lerParameters

Inputs to the function are
motor and inverter
parameters, per-unit system
base values, PWM switching
time period, sample time for
the control system, and
sample time for the speed
controller.

The function computes the
Proportional Integral (PI)
parameters (Kp, Ki) for the
field-oriented control
implementation.

The function populates a
structure named PI_params
in the MATLAB workspace,
which is used by the model.

See section “Obtain
Controller Gains” on page 3-
18 for more details.

mcb_updateInverterPara
meters

Inputs to the function are
motor and inverter
parameters.

The function updates the
inverter parameters based on
the selected hardware and
motor.

This table explains the useful variables for each control parameter that you can update.

Note You can try starting MATLAB in the administrator mode on Windows® system, if you are unable
to update the model initialization scripts associated with the example models.

3-9

3 Estimate Control Gains from Motor Parameters

3-10

Control Parameter Category

Control Parameter Name

MATLAB Workspace Variable

Motor parameters

Manufacturer’s model number |pmsm.model
Manufacturer’s serial number |pmsm.sn
Pole pairs pmsm.p
Stator resistance (Ohm) pmsm.Rs
d-axis stator winding inductance |pmsm. Ld
(Henry)

g-axis stator winding inductance |pmsm.Lq
(Henry)

Back emf constant pmsm.Ke
(V_line(peak)/krpm)

Motor Inertia (kg.m?) pmsm.J
Friction constant (N.m.s) pmsm.F

Permanent Magnet Flux (WB)

pmsm. FLuxPM

Trated

pmsm.T rated

Nbase

pmsm.N base

Maximum motor speed used in
the

mcb _getCharacteristics(p
msm, inverter) function

pmsm.N max =2 %
pmsm.N base

pmsm.N max

Irated

pmsm.I rated

Position decoders

QEP index and Hall position
offset correction

pmsm.PositionOffset

Quadrature encoder slits per
revolution

pmsm.QEPS1lits

Inverter parameters

Manufacturer’s model number

inverter.model

Manufacturer’s serial number

inverter.sn

DC link voltage of the inverter
V)

inverter.V dc

Maximum permissible currents
by inverter (A)

inverter.I trip

On-state resistance of MOSFETs
(Ohm)

inverter.Rds on

Shunt resistance for current
sensing (Ohm)

inverter.Rshunt

Per-phase board resistance seen
by motor (Ohm)

inverter.R board

ADC Offsets for current sensor
(I, and I,)

inverter.CtSensAOffset

inverter.CtSensBOffset

Estimate Control Gains and Use Utility Functions

Control Parameter Category

Control Parameter Name

MATLAB Workspace Variable

Maximum limit of automatically
calibrated ADC offsets for
current sensor (I, and I)

inverter.CtSensOffsetMax

Minimum limit of automatically
calibrated ADC offsets for
current sensor (I, and I,)

inverter.CtSensOffsetMin

Enable Auto-calibration for
current sense ADCs

inverter.ADCOffsetCalibE
nable

ADC gain factor configured by
SPI

inverter.ADCGain

Type of inverter:

1 — Active high-enabled
inverter

0 — Active low-enabled inverter

inverter.EnablelLogic

Convention for current entering
motor:

1 — Current entering motor
sensed as positive by current
sense amplifier

-1 — Current entering motor
sensed as negative by current
sense amplifier

inverter.invertingAmp

Reference voltage for the
inverter current sensing circuit
V)

inverter.ISenseVref

Output voltage of the inverter
current sensing circuit
corresponding to 1 Ampere
current (V/A)

You can compute this parameter
using the datasheet values of
current shunt resistance
(inverter.Rshunt) and
current sense amplifier gain of
the inverter.

inverter.ISenseVoltPerAm
p = inverter.Rshunt &
current sense amplifier gain

inverter.ISenseVoltPerAm
p

Maximum measurable peak-
neutral current by the inverter
current sensing circuit (A)

inverter.ISenseMax

Processor

Manufacturer’s model number

target.model

3-11

3 Estimate Control Gains from Motor Parameters

Control Parameter Category

Control Parameter Name

MATLAB Workspace Variable

Manufacturer’s serial number

target.sn

CPU Frequency

target.CPU frequency

PWM frequency

target.PWM frequency

PWM counter period target.PWM Counter Perio
d

Reference voltage for ADC (V) |Target.ADC Vref

Maximum count output for 12- |Target.ADC MaxCount

bit ADC

Baud rate for serial
communication

Target.SCI baud rate

Per-Unit System

Base voltage (V)

PU System.V base

Base current (A)

PU System.I base

Base speed (rpm)

PU System.N base

Base torque (Nm)

PU System.T base

Base power (Watts)

PU System.P base

Data-type for target device

Data-type (Fixed-point Or
Floating-point) selection

dataType

Sample time values

Switching frequency for
converter

PWM frequency

PWM switching time period T pwm
Sample time for current Ts
controllers

Sample time for speed Ts speed

controller

Simulation sample time

Ts simulink

Simulation sample time for
motor

Ts motor

Simulation sample time for
inverter

Ts_inverter

Controller parameters

Proportional gain for Iq
controller

PI params.Kp i

Integral gain for Iq controller PI params.Ki i
Proportional gain for Id PI params.Kp id
controller

Integral gain for Id controller PI params.Ki id
Proportional gain for Speed PI params.Kp speed
controller

Integral gain for Speed PI params.Ki speed

controller

Estimate Control Gains and Use Utility Functions

Control Parameter Category

Control Parameter Name

MATLAB Workspace Variable

Proportional gain for Field
weakening controller

PI params.Kp fwc

Integral gain for Field
weakening controller

PI params.Ki fwc

Sensor delay parameters

Current sensor delay

Delays.Current Sensor

Speed sensor delay

Delays.Speed Sensor

Delay for low-pass speed filter

Delays.Speed Filter

Controller delay parameters

Damping factor (C) of the
current control loop

Delays.OM damping factor

Symmetrical optimum factor of
the speed control loop

Delays.S0 factor speed

Note For the predefined processors and drivers, the model initialization script uses the default

values.

The model initialization script uses these functions for performing the computations:

Control Parameter Category

Function

Functionality

Base speed of the motor

mcb_getBaseSpeed

Calculates the base speed of
PMSM at the rated voltage and
rated load.

For details, type help
mcb_getBaseSpeed at the
MATLAB command prompt or
see section “Obtain Base Speed”
on page 3-16.

3-13

3 Estimate Control Gains from Motor Parameters

3-14

Control Parameter Category

Function

Functionality

Motor characteristics for the
given motor and inverter

mcb _getCharacteristics

Obtain these drive
characteristics of a PMSM
motor.

* Torque as opposed to speed
characteristics

* Power as opposed to speed
characteristics

* Iy, as opposed to speed
characteristics

¢ Maximum phase current

(Ipeak = \I + I2) of the

motor as opposed to speed
characteristics

For details, type help
mcb_getCharacteristics at
the MATLAB command prompt.

For details, see section “Obtain
Motor Characteristics” on page
3-17.

Estimate Control Gains and Use Utility Functions

Control Parameter Category |Function Functionality
mcb _getCharacteristicsAc |Obtain these motor
im characteristics of an induction
motor.

* Torque as opposed to speed
characteristics

* Power as opposed to speed
characteristics

Obtain these drive
characteristics of an induction
motor.

+ Torque as opposed to speed
characteristics

* Power as opposed to speed
characteristics

* Iy, as opposed to speed
characteristics

* Maximum phase current

(Ipeak = \I + I2) of the

motor as opposed to speed
characteristics

For details, type help

mcb _getCharacteristicsAc
im at the MATLAB command
prompt.

For details, see section “Obtain
Motor Characteristics” on page

3-17.
Control algorithm parameters |[mcb.internal.SetControll |Compute the gains for these PI
erParameters controllers:

* Current (torque) control loop
gains (K, K;) for currents I,
and I,

* Speed control loop gains (K,
Ki)

* Field weakening control
gains (K, K;)

For details, see section “Obtain
Controller Gains” on page 3-
18.

3-15

3 Estimate Control Gains from Motor Parameters

3-16

Control Parameter Category |Function Functionality
Control analysis for the motor |mcb_getControlAnalysis Performs frequency domain
and inverter you are using analysis for the computed gains

of PI controllers used in the
field-oriented motor control
system.

Note This feature requires
Control System Toolbox™.

For details, type help
mcb getControlAnalysis at

the MATLAB command prompt.

Obtain Base Speed

The function mcb_getBaseSpeed computes the base speed of the PMSM at the given supply voltage.
Base speed is the maximum motor speed at the rated voltage and rated load, outside the field-
weakening region.

When you call this function (for example, base speed = mcb getBaseSpeed(pmsm,inverter)),
it returns the base speed (in rpm) for the given combination of PMSM and inverter. The function
accepts the following inputs:

¢ PMSM parameter structure.
* Inverter parameter structure.

These equations describe the computations that the function performs:

The inverter voltage constraint is defined by computing the d-axis and g-axis voltages:
Vdo = — WelLglq
Vgo = We(Lglg + Apm)

Vdc

_ ; 2 2
Vmax = 3 — Rgimax = VVdot Vo

The current limit circle defines the current constraint which can be considered as:

lmax = ld + lq

In the preceding equation, ig is zero for surface PMSMs. For interior PMSMs, values of iy and i,
corresponding to MTPA are considered.

Using the preceding relationships, we can compute the base speed as:

Vmax

1
P (Lei)” + (Laig + Apm)”

Whase =

where:

Estimate Control Gains and Use Utility Functions

we is the electrical speed corresponding to frequency of stator voltages (Radians/ sec).
Whase 1S the mechanical base speed of the motor (Radians/ sec).

ig is the d-axis current (Amperes).

iq is the g-axis current (Amperes).

V4, is the d-axis voltage when iy is zero (Volts).

Vqo is the g-axis voltage when i, is zero (Volts).

L4 is the d-axis winding inductance (Henry).

L, is the g-axis winding inductance (Henry).

R is the stator phase winding resistance (Ohms).

Apm is the permanent magnet flux linkage (Weber).

vg is the d-axis voltage (Volts).

Vq is the g-axis voltage (Volts).

Vmax is the maximum fundamental line to neutral voltage (peak) supplied to the motor (Volts).
V4c is the dc voltage supplied to the inverter (Volts).

imax 1S the maximum phase current (peak) of the motor (Amperes).

p is the number of motor pole pairs.

Obtain Motor Characteristics

The function mcb _getCharacteristics calculates the torque, power, and current characteristics of
a PMSM, which helps you to develop the control algorithm for the motor.

The function returns these characteristics for the given PMSM:

Torque as opposed to Speed
Power as opposed to Speed
I4, as opposed to Speed
Ineqk @s opposed to Speed

3-17

3 Estimate Control Gains from Motor Parameters

Torque-Speed Characteristics for Anaheim-BLY171D-24V-4000 Power-Speed Characteristics for Anaheim-BLY171D-24V-4000
0.06 b
30 r 7
0.05 b
- 25 7
—_— j2]
E L 1 =
= 0.04 g 20 - 1
@ =
= 0.03 | \-\‘_— T 451 J
8 :
0.02 1 10+ _
0.01 - 1 5t 4
I I . I . . I . I I 0 I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Speed (rpm) Speed (rpm)
qu Vs Speed Ipeak Vs Speed
Iy Ipeak
—Iq _____ Iraled
) B] |)g{/__ﬁf_,_
— R—H_ﬁ_g o ————mem
3 | [=%
E E
Z of : < of 1
Lo A(é
_® 8
0 1000 2000 3000 4000 5000 6000 7000 80OO 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

3-18

Speed (rpm) Speed (rpm)

The function mcb getCharacteristicsAcim calculates the motor and drive characteristics of an
induction motor, which helps you to develop the control algorithm for the motor.

The function returns these motor characteristics for the given induction motor:

» Torque as opposed to Speed
* Power as opposed to Speed

The function returns these drive characteristics for the given induction motor:

» Torque as opposed to Speed
* Power as opposed to Speed
* Iy, as opposed to Speed

* I,eq as opposed to Speed

Obtain Controller Gains

The function mcb.internal.SetControllerParameters computes the gains for the PI controllers
used in the field-oriented motor control systems.

You can use this command to call the function mcb.internal.SetControllerParameters:
PI params = mcb.internal.SetControllerParameters(pmsm,inverter,PU System,T pwm,Ts,Ts speed);

The function returns the gains of these PI controllers used in the FOC algorithm:

Estimate Control Gains and Use Utility Functions

» Direct-axis (d-axis) current loop

* Quadrature-axis (g-axis) current loop
* Speed loop

* Field-weakening control loop

The function accepts these inputs:

* pmsm object

* inverter object
* PU system params
* T pwm

* Ts control

* Ts speed

The function does not plot any characteristic.

The design of compensators depends on the classical frequency response analysis applied to the
motor control systems. We used the Modulus Optimum (MO) based design for the current controllers
and the Symmetrical Optimum (SO) based design for the speed controller.

The function automatically computes the other required parameters (for example, delays, damping
factor) based on the input arguments.

You can modify the default system responses by an optional input to the function that specifies the
system delays, damping factor, and symmetrical optimum factor:

PI params = mcb.internal.SetControllerParameters(pmsm,inverter,PU System,T pwm,Ts,Ts speed,Delay:

Damping factor () defines the dynamic behavior of the standard form of a second-order system,
where 0 < ¢ < 1[1]. An underdamped system gets close to the final value more quickly than a
critically damped or an overdamped system. Among the systems that respond without oscillations, a
critically damped system shows the quickest response. An overdamped system is always slow in
responding to any inputs. This parameter has a default value of %

Symmetrical optimum factor (a) defines the placement of the cross-over frequency at the geometric
mean of the two corner frequencies, to obtain maximum phase margin that results in optimum
damping of the speed loop, where a > 1 [2]. This parameter has a default value of 1.2.

This example explains how to customize the parameters:

% Sensor Delays

Delays.Current _Sensor = 2*Ts; %Current Sensor Delay
Delays.Speed Sensor = Ts; %Speed Sensor Delay
Delays.Speed Filter = 20e-3; %Delay for Speed filter (LPF)

% Controller Delays
Delays.OM damping factor = 1/sqrt(2); %sDamping factor for current control loop
Delays.S0 factor speed = 1.5; %sSymmetrical optimum factor 1 < x < 20

% Controller design
PI params = mcb.internal.SetControllerParameters(pmsm,inverter,PU System,T pwm,Ts,Ts speed,Delay:

3-19

3 Estimate Control Gains from Motor Parameters

Perform Control Analysis

The function mcb_getControlAnalysis performs the basic control analysis of the PMSM FOC
current control system. The function performs frequency domain analysis for the computed PI
controller gains used in the field-oriented motor control systems.

Note This function requires the Control System Toolbox.

When you call this function (for example,

mcb getControlAnalysis(pmsm,inverter,PU System,PI params,Ts,Ts speed)), it
performs the following functions for the current control loop or subsystem:

» Transfer function for the closed-loop current control system

* Root locus

* Bode diagram

» Stability margins (PM & GM)

* Step response

* PZ map

The function plots the corresponding plots:

Root Locus Bode Diagram

0.78 066 052 0.36 0.18

Magnitude (dB)

Imaginary Axis (seconds™)
3
>
¥
g
>
b4

/
Phase (deg)

Real Axis (seconds ') Frequency (rad/s)

Unit-Step Response of Current Loop . Pole-Zero Map

0.96 092 0.86 076 0.58 0.35

Se+04 40404 Je+04 2e+04 Te+04

Outputs
~—
Imaginary Axi%(seooﬂds"]
-
2

/ 0.96 092 0.86 0.76 058 0.35

t Sec (seconds) Real Auis (seconds™")

3-20

Estimate Control Gains and Use Utility Functions

References
[1] Ogata, K. (2010). Modern control engineering. Prentice hall.

[2] Leonhard, W. (2001). Control of electrical drives. Springer Science & Business Media. pp. 86.

3-21

Implement Motor Speed Control by
Using Field-Oriented Control (FOC)

* “Field-Oriented Control (FOC)” on page 4-3

* “Six-Step Commutation” on page 4-5

* “Direct Torque Control (DTC)” on page 4-7

* “Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset” on page 4-10
* “Tune Control Parameter Gains in Hardware and Validate Plant” on page 4-18

* “Tune PI Controllers Using Field Oriented Control Autotuner” on page 4-28

* “Field-Oriented Control of PMSM Using Hall Sensor” on page 4-38

* “Field-Oriented Control of PMSM Using Quadrature Encoder” on page 4-43

* “Field-Weakening Control (with MTPA) of PMSM” on page 4-48

* “Sensorless Field-Oriented Control of PMSM” on page 4-61

* “Field-Oriented Control of PMSM Using SI Units” on page 4-67

+ “Hall Offset Calibration for PMSM Motor” on page 4-71

* “Monitor Resolver Using Serial Communication” on page 4-75

* “Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-80

* “Model Switching Dynamics in Inverter Using Simscape Electrical” on page 4-85
* “Control PMSM Loaded with Dual Motor (Dyno)” on page 4-95

* “Field-Oriented Control of Induction Motor Using Speed Sensor” on page 4-100
* “Sensorless Field-Oriented Control of Induction Motor” on page 4-104

* “Tune PI Controllers Using Field Oriented Control Autotuner Block on Real-Time Systems”
on page 4-108

+ “Six-Step Commutation of BLDC Motor Using Sensor Feedback” on page 4-119

* “Hall Sensor Sequence Calibration of BLDC Motor” on page 4-124

* “Position Control of PMSM Using Quadrature Encoder” on page 4-130

* “Integrate MCU Scheduling and Peripherals in Motor Control Application” on page 4-134
* “Partition Motor Control for Multiprocessor MCUs” on page 4-143

* “Frequency Response Estimation of PMSM Using Field-Oriented Control” on page 4-148
* “MATLAB Project for FOC of PMSM with Quadrature Encoder” on page 4-163

+ “Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods”
on page 4-170

* “Algorithm-Export Workflows for Custom Hardware” on page 4-187

+ “Estimate PMSM Parameters Using Recommended Hardware” on page 4-189

» “Field-Oriented Control of PMSM Using Reinforcement Learning” on page 4-199

* “Estimate Induction Motor Parameters Using Recommended Hardware” on page 4-206
* “Estimate PMSM Parameters Using Custom Hardware” on page 4-213

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

* “Tune PI Controllers (in Field-Weakening Control Mode) Using FOC Autotuner Block”
on page 4-221

* “Field-Oriented Control (FOC) of PMSM Using Hardware-In-The-Loop (HIL) Simulation”
on page 4-232

» “Direct Torque Control of PMSM Using Quadrature Encoder or Sensorless Flux Observer’
on page 4-240

* “Determine Power Losses and THD for PWM Modulation Methods” on page 4-244

* “Run Field Oriented Control of PMSM Using Model Predictive Control” on page 4-248

J

4-2

Field-Oriented Control (FOC)

Field-Oriented Control (FOC)

Field-Oriented Control (FOC), also known as vector control, is a technique used to control Permanent
Magnet Synchronous Motor (PMSM) and AC induction motors (ACIM). FOC provides good control
capability over the full torque and speed ranges. The FOC implementation requires transformation of
stator currents from the stationary reference frame to the rotor flux reference frame (also known as
d-q reference frame).

Speed control and torque control are the most commonly used control modes of FOC. The position
control mode is less common. Most of the traction applications use the torque control mode in which
the motor control system follows a reference torque value. In the speed control mode, the motor
controller follows a reference speed value and generates a torque reference for the torque control
that forms an inner subsystem. In the position control mode, the speed controller forms the inner
subsystem.

FOC algorithm implementation requires real time feedback of the currents and rotor position.
Measure the current and position by using sensors. You can also use sensorless techniques that use
the estimated feedback values instead of the actual sensor-based measurements.

Note Motor Control Blockset examples use current reference (Iq ref, instead of torque reference
T ref) as the speed controller output because of considerations related to the per-unit (PU)

computations. The example algorithm selects the base values for current and torque (Iq base and
T base) such that PU reference values of current and torque are identical (Iq ref pu = T ref pu).

Permanent Magnet Synchronous Motor (PMSM)

This figure shows the FOC architecture for a PMSM. For detailed set of equations and assumptions
that Motor Control Blockset uses to implement FOC of a PMSM, see “Mathematical Model of PMSM”.

ref
lq

Pl controller
(current Ig)

mlEf ml!f

(Speed™) (Speed™)
L g Pl controller *—
—, r—
Wiy Tref

MTPA
control
reference

Ve

Duty Cycles

Pl controller Inverse park
(current Id) transform

Space vector
generator

Park Clarke

transform transform

Mech
to elect
position

Sine-cosine
lookup

Sensor Position
decoder feedback

4-3

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

AC Induction Motor (ACIM)

This figure shows the FOC architecture for an AC induction motor (ACIM). For detailed set of
equations and assumptions that Motor Control Blockset uses to implement FOC of an induction

motor, see “Mathematical Model of Induction Motor”.
Voltage
supply

ref ref g Pl controller
N “ ey |current Id)
(Speed™f) (Speed™) i [.
Lo g Pl controller *~— .t I Inverse park Space vectar
— (speed) cfo e e | transform generator
w, Tref reference sq VB
A d Pl controller .
(current Iq) sind, cos6,
la I
Park el Clarke -«
transform T transform " A
I Iy
-
o Induction
Sine-cosine 8, Position Motor
lookup generator
me
» i Waip
_—
g
W Speed Feedback

r Speed
measurement

4-4

Six-Step Commutation

Six-Step Commutation

Six-step commutation, also known as trapezoidal commutation, is a commutation technique used to
control three-phase brushless DC (BLDC) permanent magnet motor. It controls the stator currents to
achieve a motor speed and direction of rotation.

Six-step commutation uses these conduction modes:

* 120 degree mode conducts current in only two stator phases.
* 180 degree mode conducts current in all three stator phases.

Motor Control Blockset supports 120 degree conduction mode. At a given time, this mode energizes
only two stator phases and electrically isolates the third phase from the power supply. You can use
either Hall or quadrature encoder position sensors to detect the rotor position. Motor Control
Blockset provides Six Step Commutation block that uses the Hall sequence or rotor position inputs to
determine the 60 degree sector where the rotor is present. It generates a switching sequence that
energizes the corresponding phases. As the motor rotates, the sequence switches the stator currents
every 60 degree such that the torque angle (angle between rotor d-axis and stator magnetic field)
remains 90 degrees (with a deviation of 30 degrees). Therefore, the switching signals operate
switches to control the stator currents, and therefore, control the motor speed and direction of
rotation. For more details, see Six Step Commutation.

The stator current waveform takes a trapezoidal shape.

1.126 1.128 1.130 1.132 1134 1.136 1.138 1.140 1.142 1144 1.146

The 120 degree conduction mode is a less complex technique that provides good speed control for the
BLDC motors. This figure shows the six-step commutation architecture for a BLDC motor.

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Voltage
supply

Speed™f

Pl controller

(speed) Pl controller

(current) Duty ratio

PWM

Speed®

Idct

X

y¥vyvwy

.
Commutation

Six-step seguence
commutation

lac Current
Measurement

Y

Position sensor

Speed

Position
-
Measurement Hall state or Decoder

position
PM-BLDC

Motor

Direct Torque Control (DTC)

Direct Torque Control (DTC)

mnef
(Speed™)
*—>»

—
Wy

Tnef
Pl controller
(speed)

Direct Torque Control (DTC) is a vector motor control technique that implements motor speed control
by directly controlling the flux and torque of the motor. Unlike field-oriented control (FOC) that
controls d- and g-axis motor currents, the DTC algorithm estimates the torque and flux values from
the motor position and currents. Then it uses PI controllers to control the motor torque and flux to
eventually generate the optimum voltages that run the motor.

Motor Control Blockset uses the DTC space vector pulse-width modulation (DTC-SVPWM) variant to
control a permanent magnet synchronous motor (PMSM). The technique uses space vector
modulation (SVM) to produce the pulse-width modulation (PWM) duty cycles that are used by the
inverter to generate the three-phase voltages that run the PMSM.

The DTC-SVPWM algorithm estimates the motor torque and flux feedback values using the current
feedback (in the a-f reference frame) from the motor. The algorithm uses the motor speed feedback
to compute the flux reference value. The speed PI controller (part of the outer control loop) uses the
speed error input to compute the torque reference value. The flux and torque PI controllers (part of
the inner control loop) use these flux and torque references and flux and torque feedback values to
compute the d-axis and g-axis reference voltages. The algorithm uses the PWM Reference Generator
block to generate PWM duty-cycles (using SVM) from these reference voltages.

You can determine current rotor position using both sensor-based or sensorless approaches.

fluxref

Pl controller

l Vae

Duty Cycles

Inverse park
transform

Pl controller
(torque)

Space vector
generator

Torque flux Clarke
I estimator transform

Mech
to elect
position

Sine-cosine
lookup

Position

feedback

Wry Speed Bem B
measurement

Flux and Torque Estimation

The DTC-SVPWM algorithm used by Motor Control Blockset uses these transient machine model
equations to estimate flux and torque of a PMSM.

4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-8

These equations describe flux estimation from the currents in the a-p reference frame and rotor
position:

Wo = Lg iy + wpp - COSO

yg = Ls- iﬁ+ wpM - Sinf

v =1v¢+yj

These equations describe the per-unit (PU) computation of flux:
VB = (Wase - LE" +13") + (wpp - cos6)
q/gu = (wpgse - LE*- igu) + (whp - sind)
o =+ (v

Whase = 2 "1 fpase

These equations describe torque estimation from the currents in the a-f reference frame:
_3 ; ,
T=35p (Valp ~ Ypia)

These equations describe the per-unit (PU) computation of torque:

1 ;)
™ = B (vEi5" - vhiz")

where:

* yis the rotor flux of PMSM (Weber).

* yPUis the per-unit version of y (Weber).

* y, is the rotor flux along the a-axis of the a-f reference frame (Weber).

* Y, is the per-unit version of y, (Weber).

* yjgis the rotor flux along the B-axis of the a-B reference frame (Weber).

* g’ is the per-unit version of y; (Weber).

* ypy is the permanent magnet flux linkage of the PMSM (Weber).

o ypPU is the per-unit version of ypy, (Weber).

* L, is the stator inductance of the PMSM (Henry).

* LPUis the per-unit version of L, (Henry).

* i, is the motor current along the a-axis of the a-B reference frame (Amperes).
* i,/P“is the per-unit version of i, (Amperes).

* igis the motor current along the B-axis of the a-B reference frame (Amperes).
e igP" is the per-unit version of i; (Amperes).

* 0 is the rotor position (captured by a sensor or determined by sensorless position estimation)
(Radians).

Direct Torque Control (DTC)

Whase 1S the mechanical base speed of the motor (Radians/ sec).

frase is the mechanical frequency of the motor (Hertz).
T is the rotor torque (Nm).

Tru is the per-unit version of T (Nm).

p is the number of pole pairs of the motor.

4-9

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Run 3-Phase AC Motors in Open-Loop Control and Calibrate
ADC Offset

4-10

This example uses open-loop control (also known as scalar control or Volts/Hz control) to run a motor.
This technique varies the stator voltage and frequency to control the rotor speed without using any
feedback from the motor. You can use this technique to check the integrity of the hardware
connections. A constant speed application of open-loop control uses a fixed-frequency motor power
supply. An adjustable speed application of open-loop control needs a variable-frequency power supply
to control the rotor speed. To ensure a constant stator magnetic flux, keep the supply voltage
amplitude proportional to its frequency.

Open-loop motor control does not have the ability to consider the external conditions that can affect
the motor speed. Therefore, the control system cannot automatically correct the deviation between
the desired and the actual motor speed.

This model runs the motor by using an open-loop motor control algorithm. The model helps you get
started with Motor Control Blockset™ and verify the hardware setup by running the motor. The
target model algorithm also reads the ADC values from the current sensors and sends these values to
the host model by using serial communication.

You can use this model to:

* Check connectivity with the target.

* Check serial communication with the target.

» Verify the hardware and software environment.

» Check ADC offsets for current sensors.

* Run a new motor with an inverter and target setup for the first time.

Models

The example includes these models:

* mcb open loop control f28069M DRV8312
* mcbh open loop control f28069MLaunchPad
* mcbh open loop control f28379d

You can use these models for both simulation and code generation. You can also use the open_system
command to open the Simulink® models. For example, use this command for a F28069M based
controller:

open_system('mcb _open loop control f28069M DRV8312.slx"');

Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset

Open Loop Control of 3-phase motors

Note: This example requires a Tl F28069M Control Card with DRV8312 EVM

Steps:

1. Update Configuration panel before simulation or

Configuration

codegeneration.
2. Simulate the medel to output voltage in scope .
3. Click on 'Build, Deploy & Start in HARDWARE tab Code generation .I
4. Control motor via host model
5. Leamn more about this example - 2 l

Simulation

Number of Pole Pairs
- : SCI_Rx_INT() ADC Interruptl)
PWM Frequency [Hz] 20000 Heartbeat LED Desired Speed 1 Desired Speed] Speed_ref vabe_PU »(
. Scope
Base Speed [RPM] 4000 Global Variable Serial Receive Communication Open Loop Control

Data type for control e
algorithm E:Ingle v

Enable

Copyright 2020 The MathWorks, Inc.

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products
To simulate model:

1. For the models: mcbh_open_loop_control f28069M _DRV8312 and
mcb_open_loop_control f28069MLaunchPad

e Motor Control Blockset™
* Fixed-Point Designer™

2. For the model: mcb_open_loop_control £28379d

* Motor Control Blockset™
To generate code and deploy model:

1. For the models: mcb_open_loop _control f28069M _DRV8312 and
mcb_open_loop_control f28069MLaunchPad

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
» Fixed-Point Designer™

2. For the model: mcb_open_loop_control £28379d

Motor Control Blockset™
Embedded Coder®
Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

4-11

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-12

» Fixed-Point Designer™ (only needed for optimized code generation)
Prerequisites
1. For BOOSTXL-DRV8323, use these steps to update the model:

* Navigate to this path in the model: /Open Loop Control/Codegen/Hardware Initialization.

For LAUNCHXL-F28379D: Update DRV830x Enable block from GPIO124 to GPIO67.

For LAUNCHXL-F28069M: Update DRV830x Enable block from GPIO50 to GPIO12.

2. For BOOSTXL-3PHGANINYV, use these steps to update the model:

For LAUNCHXL-F28379D: In the Configuration panel of mcb_open_loop_control _£28379d, set
Inverter Enable Logic to Active Low.

NOTE: When using BOOSTXL-3PHGANINV inverter, ensure that proper insulation is available
between bottom layer of BOOSTXL-3PHGANINV and the LAUNCHXL board.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector on the Simulation tab to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the motor by using open-loop control.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. You can also use the target model name to
open the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* F28069M controller card + DRV8312-69M-KIT inverter:
mcb open loop control f28069M DRV8312

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 7-2.

* LAUNCHXL-F28069M controller + (BOOSTXL-DRV8301 or BOOSTXL-DRV8305 or BOOSTXL-
DRV8323 or BOOSTXL-3PHGANINV) inverter: mch open loop control f28069MLaunchPad

* LAUNCHXL-F28379D controller + (BOOSTXL-DRV8301 or BOOSTXL-DRV8305 or BOOSTXL-
DRV8323 or BOOSTXL-3PHGANINV) inverter: mcb open loop control f28379d

Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset

To configure the model mcb_open_loop_control f28379d, set the Inverter Enable Logic field (in
the Configuration panel of target model) to:

* Active High: To use the model with BOOSTXL-DRV8301 or BOOSTXL-DRV8305 or BOOSTXL-
DRV8323 inverter.

* Active Low: To use the model with BOOSTXL-3PHGANINYV inverter.

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

NOTE:

* This example supports any type of three-phase AC motor (PMSM or induction) and any type of
inverter attached to the supported hardware.

* Some PMSMs do not run at higher speeds, especially when the shaft is loaded. To resolve this
issue, you should apply more voltages corresponding to a given frequency. You can use these steps
to increase the applied voltages in the model:

1. Navigate to this path in the model: /Open Loop Control/Control System/VabcCalc/.

2. Update the gain Correction Factor sinePWM as 20%.

3. For safety reasons, regularly monitor the motor shaft, motor current, and motor temperature.
Generate Code and Run Model to Implement Open-Loop Control

1. Simulate the target model and observe the simulation results.

2. Complete the hardware connections.

3. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

4. Update these motor parameters in the Configuration panel of the target model.

* Number of Pole Pairs

* PWM Frequency [Hz]

* Base Speed [RPM]

* Data type for control algorithm

* Inverter Enable Logic (only available in mcb_open_loop_control £28379d target model)

5. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, a program that operates
the CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not
mistakenly configured to use the board peripherals intended for CPU1.

6. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
NOTE: Ignore the warning message "Multitask data store option in the Diagnostics page of the

Configuration Parameter Dialog is none" displayed by the model advisor, by clicking the Always
Ignore button. This is part of the intended workflow.

4-13

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

7. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb open loop control host model.slx');

Open Loop Control Host Model

Prerequisites:
1. Deploy the target model to the hardware

2.You should see and verify the variables
from the target model in the base 100

E28069m + DRVB312 Motor Control Panel

F28069m Launchpad
F28378d Launchpad

Stop Stari

workspace.

Steps:
1. Select hardware in Target Selelction.

Reference Speed [RPM)] Motor

Select ‘Other’ option if you want to manually set
the baud rate in "Host Serial Setup’ block.
2. Select the port in Host Serial Setup,

Host Serial Receive and
Host Serial Transmit
3. Simulate this model

Target
Selection

la [(ADC counls)
No port la
selected

-

4. Use "Motor Start / Stop' switch to control the
mator,
5. Enter speed request in RPM using ‘Reference

« Tl F28069M

Host Serial Setup

Ib (ADC counts)

Y

Serial Communication

Scope

Speed edit box. Limit the reference speed to
half of the rated speed.

6. Observe the ADC counts for phase current

Copyright 2020-2021 The MathWarks, Inc.

measurent in Scope,

4-14

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

8. Select a target (either TI F28069M, TI F28379D, or Other) in the Target Selection area of the
host model.

NOTE: If you select Other, you can enter the Baud rate for the target hardware that you are using,
in the Host Serial Setup block parameter dialog box.

9. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

10. Enter the Reference Speed value in the host model.
11. Click Run on the Simulation tab to run the host model.

12. Change the position of the Start / Stop Motor switch to On, to start running the motor.

13. After the motor is running, observe the ADC counts for the 1 a and { b currents in the Time Scope.

NOTE: This example may not allow the motor to run at full capacity. Begin running the motor at a
small speed. In addition, it is recommended to change the Reference Speed in small steps (for
example, for a motor having a base speed of 3000 rpm, start running the motor at 500 rpm and then
increase or decrease the speed in steps of 200 rpm).

Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset

If the motor does not run, change the position of the Start / Stop Motor switch to Off, to stop the
motor and change the Reference Speed in the host model. Then, change the position of the Start /
Stop Motor switch to On, to run the motor again.

Generate Code and Run Model to Calibrate ADC Offset

1. Simulate the target model and observe the simulation results.

2. Complete the hardware connections.

3. Disconnect the motor wires for three phases from the hardware board terminals.

4. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

5. Load a sample program to CPU2 of LAUNCHXL-F28379D (for example, program that operates the
CPU2 blue LED using GPIO31) to ensure that CPU2 is not mistakenly configured to use the board
peripherals intended for CPU1.

6. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

NOTE: Ignore the warning message "Multitask data store option in the Diagnostics page of the
Configuration Parameter Dialog is none" displayed by the model advisor, by clicking the Always
Ignore button. This is part of the intended workflow.

7. Click the host model hyperlink in the target model to open the associated host model.

8. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

9. Click Run on the Simulation tab to run the host model.

10. Observe the ADC counts for the I i and i I currents in the Time Scope. The average values of the

ADC counts are the ADC offset corrections for the currents I it and I f». To obtain the average
(median) values of ADC counts:

* In the Scope window, navigate to Tools > Measurements and select Signal Statistics to display
the Trace Selection and Signal Statistics areas.

4-15

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4| Scope - O X
File = Tools View Simulation Help o
{'::'-":.} < Zoom In - - [ﬂ < ﬁF @ <

foom X
foomY
Foom Out

Pan

Axes Scaling

Triggers
Measurements Trace Selection

Cursor Measurements
Signal Statistics
Bilevel Measurements

Peak Finder

Ready Sample based

Under Trace Selection, select a signal (4'ir i1 or I Ir). The characteristics of the selected signal are
displayed in the Signal Statistics pane. You can see the median value of the selected signal in the
Median field.

4-16

Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset

¥ ¥ Trace Selection

la

* ¥ Signal Statistics

For the Motor Control Blockset examples, update the computed ADC (or current) offset value in the
inverter.CtSensAOffset and inverter.CtSensBOffset variables in the model initialization
script linked to the example. For instructions, see “Estimate Control Gains and Use Utility Functions”
on page 3-2.

NOTE: The computed ADC offset depends on the ADC gain value inverter.SPI Gain Setting
that you configure in the model initialization script. Changing ADC gain also changes the ADC offset.

4-17

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Tune Control Parameter Gains in Hardware and Validate Plant

4-18

This example uses field-oriented control (FOC) to run a three-phase permanent magnet synchronous
motor (PMSM) in different modes of operation for plant validation. FOC algorithm implementation
needs the real-time feedback of the rotor position. This example uses a quadrature encoder sensor to
measure the rotor position. For details about FOC, see “Field-Oriented Control (FOC)” on page 4-3.

The example runs the motor in these modes:
* Stop - In this mode, the motor stops running because the inverter outputs zero volts.

* Open loop - In this mode, the controller uses open-loop control to run the motor. You can use the
Operating Mode Variables > Open-loop mode area of the host model to change the output
voltage of the inverter (in per-unit) and the rotor speed (in per-unit). Use the Monitor area to
select the speed and rotor position values to display them on the scope for monitoring.

* Torque control - In this mode, the controller uses a torque control algorithm to run the motor.
You can use the Operating Mode Variables > Motor torque control mode area of the host

model to change the I il reference and 1 i reference current values (in per-unit). You can also set
the maximum speed limit of the motor (in per-unit).

You can lock the rotor by turning the slider switch to the Pos lock position that sets the rotor position
to zero. Therefore, in this mode, the controller receives the position feedback as zero because the
motor stops running. If you turn the switch to the Unlock position, the motor runs and the controller
receives position feedback from the quadrature encoder (you can monitor this value by using the
Position_meas signal in the Monitor area of host model). You can use the scope to monitor the two
debug signals (Monitor Signal #1 and Monitor Signal #2) that you select in the Monitor area.
Therefore, you can use the slider switch to tune the torque control gain parameters.

* Speed control - In this mode, the controller uses a speed control algorithm to run the motor. You
can use the Operating Mode Variables > Motor speed control mode area of the host model to
change the Speed Reference value (in per-unit) of the rotor. You can use the scope to monitor the
two debug signals (Monitor Signal #1 and Monitor Signal #2) that you select in the Monitor area.

For information related to the per-unit system, see “Per-Unit System” on page 6-20.

To further control the motor, you can also use the Control loop gains area of the host model to
change the control parameters of the d-axis and g-axis current controllers and the speed controller.

You can use this example to run the motor in open-loop control, torque control, and speed control
modes. You can also use this example for tuning the hardware gains and validating the plant model.

Caution: Stop the motor first before transitioning from one operating mode to another.
You can select one of these operating modes in the Control area of the host model:

* Stop
* Open loop run
» Torque control

* Speed control

Tune Control Parameter Gains in Hardware and Validate Plant

Model
The example includes the model mch pmsm operating mode f28379d.

You can use the model for both simulation and code generation. You can also use the open system
command to open the Simulink® model:

open_system('mcb _pmsm operating mode f28379d.slx"');

Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation
Note: This example requires a Tl F28379D LaunchPad with a BOOSTXL-DRVB305 booster pack

connected to a PMSM Motor with QEP Sensor

Hardware Init
Heartbeat LED
SCI_Rx_INT() d TorgueCiriTrigi) Plant Model (sim)
msghd msg bParamF——% o] bP: P bParam
bl L B aramin .
msglata Vabe sim_fb
m&gData L SpdMaas Idq_red —I—PM_PU
» l » PR
SCI Rx Interrupt Parser and Speed control E K raf Mator and Inverter

e
Iab,_sim
Explore more:

— Tarque Control 1. Edit motor & inverter parameters
2. Use Simulate Dashboard for simulation
E 3. Calibrate QEP offset
4, Update motor parameters with QEP offset
5. Build, Deploy & Start
Simulate Dashboard 6. Control motor via host model
Copyright 2020 The MathWarks, Inc. 7. Leamn more about this example.

Required MathWorks® Products

To simulate model:

* Motor Control Blockset™

To generate code and deploy model:

1. Motor Control Blockset™

2. Embedded Coder®

3. Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

4. Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that

you can replace with the values from either the motor datasheet or other sources.

4-19

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2, If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

Follow these steps to simulate the model.

1. Open the target model included with this example.

2. Click Run on the Simulation tab to simulate the target model.

3. Open the mcbh_pmsm_operating mode_f28379d > Simulate Dashboard subsystem.

Control Panel for Simulation

Control Every run default values are updated
Select Motor operating from init seript.
mode To update the default values in dashboard, update the
values in init script.
®) Stop

Open loop run
Torgue control

Speed control

Operating Mode Variables Control loop gains
Open-loop mode d-axis current controller
0.15 0.15 3.0929 5634.23199999999997
Voltage ref (PU) Speed ref (PU) Kp Gain Ki Gain

Motor torque control mode g-axis current controller

]] 0.6 Unlock | Pos lock

3.0029 5634.3199999999997
Id Reference Ilq Reference Speed limit Kp Gain Ki Gain
Motor speed control mode Speed controller
0.2 0.91894 24.26439999999999¢
Speed Reference Kp Gain Ki Gain
4,—». i)
1 msgld
2
msgData

Serial Communication

4-20

Tune Control Parameter Gains in Hardware and Validate Plant

Instructions for Open-Loop Run Mode:

1. If the current operating mode is other than open-loop run, select Stop in the Control area to stop
the motor. Select Open loop run to start the motor.

2. Set the reference voltage and reference speed values (in per-unit) in the Voltage ref (PU) and
Speed ref (PU) fields available in the Operating Mode Variables > Open-loop mode area.

Instructions for Torque Control Mode:

1. If the current operating mode is other than torque control, select Stop in the Control area to stop
the motor. Select Torque control in the Control area.

2. Enter the value 0 (per-unit) in the Iq Reference field in the Operating Mode Variables > Motor
torque control mode area. In addition, set the speed limit of the motor using the Speed limit field.

3. Move the slider switch to Unlock position in the Operating Mode Variables > Motor torque
control mode area.

4, Enter the value 0.1 (per-unit) in the in the Iq Reference field (in the Operating Mode Variables
area) to start running the motor.

5. Open Simulation Data Inspector and select the Iq_ref PU and Iq_fb_PU signals for monitoring.
6. Follow steps 2 to 5 for Id Reference and monitor the Id_ref PU and Id_fb_PU signals.

NOTE: The motor can reach high speeds if you run it under no load condition in this operating mode.
In addition, the motor will not meet the Iq reference current under no load condition in this operating
mode.

Instructions for Speed Control Mode:

1. If the current operating mode is other than speed control, select Stop in the Control area to stop
the motor. Select Speed control in the Control area.

2, Enter the value 0.5 (per-unit) in the Speed Reference field in the Operating Mode Variables >
Motor speed control mode area.

3. Open Simulation Data Inspector and select the Speed_ref PU and Speed_fb_PU signals for
monitoring.

Instructions for Tuning Gain of Torque Controller:

1. If the current operating mode is other than torque control, select Stop in the Control area to stop
the motor. Select Torque control in the Control area.

2, Turn the slider switch to Pos lock position in the Operating Mode Variables > Motor torque
control mode area.

3. Enter the value 0.2 (per-unit) in the Id Reference field in the Operating Mode Variables area.

4. Open Simulation Data Inspector, select the Id_ref PU and Id_fb_PU signals, and observe the step
response of these signals.

5. Tune the control gains Kp and Ki for the d-axis current controller. Perform step change to validate
the controller gains.

4-21

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-22

Instructions for Tuning Gain of Speed Controller:

1. If the current operating mode is other than speed control, select Stop in the Control area to stop
the motor. Select Speed control in the Control area.

2. Enter the value 0.5 (per-unit) in the Speed Reference field in the Operating Mode Variables >
Motor speed control mode area.

3. Enter the value 0.8 (per-unit) in the Speed Reference field.

4. Open Simulation Data Inspector, select the Speed_ref PU and Speed_fb_PU signals, and observe
the speed step response.

5. Tune the control gains Kp and Ki for the speed controller. Perform step change to validate the
controller gains.

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the model, run (and control) the motor in a selected operating mode, and
monitor the debug signals of the model.

Required Hardware

The example supports this hardware configuration. You can also use the target model name to open
the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter:
mcb pmsm_operating mode f28379d

For connections related to the preceding hardware configuration, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware

1. Simulate the target model and observe the simulation results.

2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts

associated with the target model. For instructions, see “Quadrature Encoder Offset Calibration for
PMSM Motor” on page 4-80.

Tune Control Parameter Gains in Hardware and Validate Plant

5. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

6. To ensure that CPU2 is not mistakenly configured to use the board peripherals intended for CPU1,
load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx).

NOTE:

* Do not directly switch between the open-loop run, torque control, and speed control operating
modes. Always stop the motor before changing the operating mode.

* Before you run the motor in speed control mode for the first time, run the motor in open-loop to
determine the quadratue encoder index. This helps to start the motor smoothly in the closed-loop
speed control mode.

Instructions for Open-Loop Run Mode:
1. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
2. Click the host model hyperlink in the target model to open the associated host model.

3. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

4. Click Run on the Simulation tab to run the host model.
5. Select Stop in the Control area to stop the motor.
6. Select Open loop run to start the motor.

7. Set the reference voltage and reference speed values (in per-unit) in the Voltage ref (PU) and
Speed ref (PU) fields available in the Operating Mode Variables > Open-loop mode area.

Instructions for Torque Control Mode:
1. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
2. Click the host model hyperlink in the target model to open the associated host model.

3. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

4, Click Run on the Simulation tab to run the host model.
5. Select Stop in the Control area to stop the motor.

6. Enter the value 0 (per-unit) in the Id Ref (PU) and Iq Ref (PU) fields in the Operating Mode
Variables > Motor torque control mode area. In addition, set the speed limit of the motor using
the Speed limit (PU) field.

7. Select Torque control in the Control area.

8. Move the slider switch to Unlock position in the Operating Mode Variables > Motor torque
control mode area.

4-23

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

9. Select Iq_ref for Monitor Signal #1 and Iq_meas for Monitor Signal #2 in the Monitor area.

10. Enter the value 0.1 (per-unit) in the in the Iq Ref (PU) field (in the Operating Mode Variables
area) to start running the motor.

11. Open the scope in the host model and monitor the Iq ref and Iq meas current signals.

Note: The motor can reach high speeds if you run it under no load condition in this operating mode.
In addition, the motor will not meet the Iq reference current under no load condition in this operating
mode.

Instructions for Speed Control Mode:
1. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
2. Click the host model hyperlink in the target model to open the associated host model.

3. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

4. Click Run on the Simulation tab to run the host model.
5. Select Stop in the Control area to stop the motor.

6. Enter the value 0.5 (per-unit) in the Speed Ref (PU) field in the Operating Mode Variables >
Motor speed control mode area.

7. Select Speed control in the Control area.

8. Select Speed_ref for Monitor Signal #1 and Speed_meas for Monitor Signal #2 in the
Monitor area.

9. Open the scope in the host model and monitor the Speed ref and Speed meas output signals.
Instructions for Tuning Gain of Torque Controller:

1. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
2. Click the host model hyperlink in the target model to open the associated host model.

3. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

4. Click Run on the Simulation tab to run the host model.
5. Select Stop in the Control area to stop the motor.
6. Select Torque control in the Control area.

7. Turn the slider switch to Pos lock position in the Operating Mode Variables > Motor torque
control mode area.

8. Select Id_ref for Monitor Signal #1 and Id_meas for Monitor Signal #2 in the Monitor area.
9. Enter the value 0.2 (per-unit) in the Id Ref (PU) field in the Operating Mode Variables area.

10. Open the scope and monitor the step response signal.

4-24

Tune Control Parameter Gains in Hardware and Validate Plant

11. Tune the control gains Kp and Ki for the d-axis current controller.

Instructions for Tuning Gain of Speed Controller:

1. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
2, Click the host model hyperlink in the target model to open the associated host model.

3. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

4. Click Run on the Simulation tab to run the host model.
5. Select Stop in the Control area to stop the motor.
6. Select Speed control in the Control area.

7. Select Speed_ref for Monitor Signal #1 and Speed_meas for Monitor Signal #2 in the
Monitor area.

8. Enter the value 0.5 (per-unit) in the Speed Ref (PU) field in the Operating Mode Variables >
Motor speed control mode area.

9. Open the scope and observe the reference and the measured speed values.

10. Enter the value 0.8 (per-unit) in the Speed Ref (PU) field.

11. Observe the speed step response in the scope.

12. Tune the control gains Kp and Ki for the speed controller.

Instructions for Validating Plant Model:

1. Open the target model included with this example.

2, Click Run on the Simulation tab to simulate the target model.

3. Open the mcb_pmsm_operating_mode_f28379d > Simulate Dashboard subsystem.

4, If the current operating mode is other than speed control, select Stop in the Control area to stop
the motor. Select Speed control in the Control area.

5. Enter the value 0.2 (per-unit) in the Speed Reference field in the Operating Mode Variables >
Motor speed control mode area.

6. Enter the value 0.5 (per-unit) in the Speed Reference field.

7. Open Simulation Data Inspector, select the Speed_ref PU and Speed_fb_PU signals, and observe
the speed step response.

8. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

9. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model:

open_system('mcb _host mode control.slx');

4-25

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Host model for Control Parameter Gain Tuning (Manual) in Hardware and Plant Validation

Prerequisites:
1. Deploy the target model to the hardware

mch pmsm_operating mode f28379d
2.You should see and verify the variables from No port
the target model in the base workspace. selected Control
Steps: Host Serial Set Select Motor operating mode
1. Select port Host Serial Setup, asl SenalSelp =
Host Serial Receive and is)Stop
Host Serial Transmit Scops F— — =
2. Caution: Stop the motor when switching - () Open loop run
between the modes Serial Communication () Torque control
Operating Mode Variables Monitor
Open-loop mode
0.2 0.15 Monltor Signal #1 | Monitor Signal #)
Voltage ref (PU) Speed ref (PU))V _alpha (C)V_alpha
I"_dr:ntar torgue m!mtrol rriode _ {'.: V_bma ':'.._. v_hma
D D 0.6
| I | I | Inlock <3 Pos loc ()1_alpha (1_alpha
Id Ref (PU) IgRef (PU) Speed limit (PU) - -
Motor speed control mode (_)1_beta (_J1_beta
| 02 | ()Va out ()Va out
b (JVb_out (JVb_out
Control loop gains () Ve_out () Vc_out
d-axis current controller
' ' ' () la_meas ()la_meas
2.1651 4131.662900(
Kp Gain P () Ib _meas (®)Ib meas
g-axis current controller)) id ref d ref
2.1651 4131.662900 ~) o~)
|] () 1d_meas (1d_meas
Kp Gain_ Ki Gain_ N N
Speed controller vd ctrl_out vd ctrl_out
Kp Gain__ Ki Gain_

Copyright 2020 The MathWorks, Inc.

10. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial

Transmit, and select a Port.

11. Click Run on the Simulation tab to run the host model.

12. Select Stop in the Control area of the host model to ensure that the motor is not running.

13. Select Speed control in the Control area.

14. Select Speed_ref for Monitor Signal #1 and Speed_meas for Monitor Signal #2 in the

Monitor area.

4-26

Tune Control Parameter Gains in Hardware and Validate Plant

15. Enter the value 0.2 (per-unit) in the Speed Ref (PU) field in the Operating Mode Variables >
Motor speed control mode area.

16. Open the scope and observe the reference and the measured speed values.
17. Enter the value 0.5 (per-unit) in the Speed Ref (PU) field.
18. Observe the speed step response in the scope.

19. Compare the speed step responses obtained in steps 7 (with simulation) and 18 (with code
generation).

NOTE: In the Control loop gains area, you must enter the gain values that can be represented by
the datatype defined in the model initialization script.

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

4-27

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Tune Pl Controllers Using Field Oriented Control Autotuner

This example computes the gain values of PI controllers available in the speed and current control
loops by using the Field Oriented Control Autotuner block. For details about this block, see Field
Oriented Control Autotuner. For details about field-oriented control, see “Field-Oriented Control
(FOC)” on page 4-3.

Use the code-generation capability of the example to deploy the gain-tuning algorithm to the target
hardware. This enables you to run the algorithm by using hardware connected to a motor and to
compute accurate PI controller gains by processing motor feedback in real-time on the target
hardware. The example uses a quadrature encoder sensor to measure the rotor position.

Note: This example uses the field-oriented control algorithm as a reference. You can refer this
example and use a similar approach to add the Field Oriented Control Autotuner block and the gain-
tuning algorithm to the FOC logic available in your model.

Model
The example includes the target model mcb pmsm foc autotuner f28379d.

You can use this model for both simulation and code generation. Use the open_system command to
open the model.

open_system('mcb pmsm foc autotuner f28379d.slx');

Explore more:

1. Edit motor & inverter parameters

2. Use Dffset computation mode! to find
out position offset.

3. Update offset in Init script to variable

‘pmsm.PositionOffset’

4. Build, Deploy & Start

5. Control motor via host mode|

6. Learn more about this example

Tuning Pl controllers for current and speed using
FOC Autotuner

Note: This example requires a T| F28379D LaunchPad with a BOOSTXL-DRV8305
booster pack or BOOSTXL-3PhGaNInv connected to a PMSM Motor with QEP Sensor

Hardware Init

Code generation

HW_INT

Simulation

Heartbeat LED

SCI_Re_INT()

Desired_Speed Speed_Rel_PU Feedbacks_sim

laRef_PU

Duty_Cycles —|
L

Duty_Cydles

Faedbacks_sim

Iq_Ref_PU

‘ Enable |

Inverter and Motor - Plant Model

‘ EnClosedLoop |

Speed_fo
Current Control

‘ Debug_signals |

‘ ActiveLoop |

‘ SpeedRef |

Autotuner_Ctrl

Autotuner_Cirl E Speed_Meas_PU
[“eorea]
Serial Receive Speed Control
‘ IbOffset |

‘ UpdatePIParam |

| StartStop |

Autctuner Mode Control
‘ PI_Params |

4-28

Copyright 2021 The MathWaorks, Inc.

The Field Oriented Control Autotuner block iteratively tunes the d- and g-axis current control and
speed control loops and computes the gains of the current and speed PI controllers. Use this
command to locate the Field Oriented Control Autotuner block available inside the model:

open_system('mcb_pmsm foc autotuner f28379d/Current Control/Control System/Closed Loop Control/F

Tune PI Controllers Using Field Oriented Control Autotuner

=3
h

PlDout daxis
perturbation daxis

T
o
w
=
@

measurad feadback daxis

w
L

perturbation gaxis

PIDout gaxis

0

p]
g
=4
g

measurad fesdback gaxis
Field Orianted Cantrol

()

Y

Perturbation_Daxis

P P2

Perurbation_Caxis

o Speed P L)

Perturbation_Speed

>

PI_Params

>

Convergence

> D_SmnSmEI

Ig_f perturbation spaad
Autotuner
G ¥ PIDout spd
lq_Ref
(6} | measured fesdback spd pid gains
Spead_fb
slaristop
StartStop
convergence
B | ActiveLoop
Activeloop
o
P == -
ol ox
P == 3 L
o
e ==} |

< a_swns@

< w_manSmE.I

The block processes the current and speed feedback from the plant. It also processes the voltage
output of the d- and g-axis current PI controllers to compute the PI controller gains (Kp and Ki).

4-29

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

W
(Speed™)

4-30

Pl
controller

(speed)

(175 + Al

(175 + A1)

“draf + mdrzf)

Pl
controller

e (current Id)
ld_so

Pl
controller

Aamma (current Iq)

I

”dref+ mdref]

Field Oriented
| Control
Autotuner

{Vdrzf+ ﬂvdmf)

(Ve + AV

Pl controller gains
(K and K;)

_Z

Inverse
park
transform

For more details on the FOC architecture, see “Field-Oriented Control (FOC)” on page 4-3.

Required MathWorks® Products

To simulate model:

* Motor Control Blockset™
* Simulink Control Design™

To generate code and deploy model:

* Motor Control Blockset™
* Simulink Control Design™
* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

Prerequisites for Simulation and Hardware Deployment

1. Open the model initialization script for the target model. Check and update the motor, inverter, and
other control system and hardware parameters available in the script. For instructions on locating
and editing the model initialization script associated with a target model, see “Estimate Control Gains
and Use Utility Functions” on page 3-2.

2. In the Inverter & Target Parameters section of the model initialization script, verify that the
mcb_SetInverterParameters function uses the argument BoostXL-DRV8305. This enables the

script to use the preprogrammed parameters for the BOOSTXL-DRV8305 inverter.

3. Configure these parameters correctly in the model initialization script. These variables are
essential for the gain-tuning algorithm to compute the PI controller gains. If the values of these
variables are incorrect, the model may fail to bring the motor to the steady speed state.

* pmsm.p

Tune PI Controllers Using Field Oriented Control Autotuner

pmsm.I rated

pmsm.PositionOffset

pmsm.QEPSlits

4. If you are using a motor that is not listed in the mcb _SetPMSMMotorParameters function (used in
the System Parameters // Hardware parameters section of the model initialization script), tune
the default values of the following initial gains available in the Initial PI parameters section of the
model initialization script. This ensures that the motor reaches the steady state of speed-control
operation:

* PI params.Kp Id
* PI params.Ki Id
* PI params.Kp Iq
* PI params.Ki Iq
* PI params.Kp Speed
* PI params.Ki Speed

When you either simulate or run the example on a target hardware, the example uses crude values of
the PI controller gains to achieve the steady state of speed-control operation.

Note: When using this example, if the motor (whether it is listed or not in the
mcb_SetPMSMMotorParameters function) does not run, try tuning the default values of these
parameters.

5. In the FOC Autotuner parameters section of the model initialization script, check and update the
parameters of the Field Oriented Control Autotuner block. This sets the reference bandwidth and
phase margin values for both the speed and the current PI controllers.

Simulate the Target Model

Simulating the example is optional. Follow these steps to simulate the target model:
1. Open the target model.

2. Click Run on the Simulation tab to simulate the target model.

3. Observe the computed PI controller gain values in the Display blocks available in the
mcb_pmsm_foc _autotuner f28379d/Current Control/PI Params Display and Logging
subsystem.

The computed gains might not be accurate because step 3 in the Prerequisites for Simulation and
Hardware Deployment section checks the accuracy of only four motor parameters.

If you want to compute and test the PI controller gains using simulation, follow these steps before
clicking Run on the Simulation tab of the target model.

* Inthe System Parameters // Hardware parameters section of the model initialization script,
verify that the mcb_SetPMSMMotorParameters function uses an argument that represents your
motor (for example, Teknic2310P). Open the mcb SetPMSMMotorParameters function to see
the preprogrammed cases that store the motor parameters of commonly used PMSMs.

4-31

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-32

If the mcb_SetPMSMMotorParameters function does not list your PMSM, determine the parameters
for your motor using these steps:

* Ifyou have motor control hardware, you can estimate the parameters for your motor, by using the
Motor Control Blockset parameter estimation tool. For instructions, see “Estimate PMSM
Parameters Using Recommended Hardware” on page 4-189 and “Estimate PMSM Parameters
Using Custom Hardware” on page 4-213.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

+ Ifyou obtain the motor parameters from the datasheet or other sources, add and configure the
motor parameters in the model initialization script. These parameter values override the selected
pre-programmed case in the function mcb SetPMSMMotorParameters.

If you use the parameter estimation tool, do not update the motor parameters directly in the model
initialization script. The script automatically extracts the motor parameters from the updated
motorParam variable in the workspace.

After you simulate the target model and determine the gains, update your model (that implements
FOC) with the computed gain values to quickly bring the motor to a steady speed state.

Deploy the example to the target hardware to tune the PI controller gains more accurately by using
an actual hardware connected to a motor. For more details, see the Generate Code and Deploy Model
to Target Hardware section.

Generate Code and Deploy Model to Target Hardware

This section shows how to generate code and run the algorithm for tuning the PI controller gains on
the target hardware. Running the example on the hardware enables you to compute the PI controller
gains more accurately by processing the feedback from an actual plant in real-time.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. Before you run the host model on
the host computer, deploy the target model to the controller hardware board. The host model uses
serial communication to command the target model and run the motor in closed-loop control.
Required Hardware

The example supports the following hardware configuration. You can also use the target model name
to open the model from the MATLAB® command prompt.

LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcbh pmsm foc autotuner f28379d

For more information on connections related to this hardware configuration, see “LAUNCHXL-
F28069M and LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Complete the hardware connections.
2. The model automatically computes the analog to digital converter (ADC) offset (also known as

current offset). To disable this functionality (enabled by default), update the value of the
inverter.ADCOffsetCalibEnable variable in the model initialization script to 0.

Tune PI Controllers Using Field Oriented Control Autotuner

Alternatively, you can compute the ADC offset values and update them manually in the model
initialization script. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and Calibrate
ADC Offset” on page 4-10.

3. Compute the quadrature encoder index offset value and update it in the pmsm.PositionOffset
variable in the model initialization script of the target model. For instructions, see “Quadrature

Encoder Offset Calibration for PMSM Motor” on page 4-80.

4. Open the target model. If you want to change the default hardware configurations of the model,
see “Model Configuration Parameters” on page 2-2.

5. Load a sample program to the CPU2 of the LAUNCHXL-F28379D board. For example, load the
program that operates the CPU2 blue LED by using GPIO31 (c28379D cpu2_ blink.slx). This
ensures that CPU2 is not mistakenly configured to use the board peripherals intended for CPU1.

6. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

7. Click the host model hyperlink in the target model to open the associated host model. You can

also use the open_system command to open the host model.

open_system('mcb host autotuner f28379d.slx');

Prerequisites:
1. Deploy the target model to the hardware
meb _pmsm foc autotuner f28379d

2.You should see and verify the variables from
the target model in the base workspace.

Steps:

1. Select port in Host Serial Setup, Host Serial Receive
and Host Serial Transmit.

2. Use Motor swilch to start motor.

3. Input speed reference which is approximately half of

the rated speed of the motor.

4. Ensure the motor operation is stable by observing
the speed signal in the scope.

4. Start uning process using Autotuner switch. Keep
Pl Parameters swilch in 'Autotuner’ during tuning
process.

6. If you wish to repeat the experiment, put PI
Parameters switch to "Default’ position to write default
Pl parameters from init script to controllers.

7. Revert Pl Parameters switch to "Autotuner’. Use
ettt itk b e b ool

PMSM Field Orient Control Autotuner Host

Slop “m diart 1500
Motor Speed Ref [RPM]

Kp_Daxis

SI0p W 1@t yyiotuner < Defaul
Autotuner Pl Parameters Ki_Daxis
No port Debug1 » D

selected
Debug2 >

Host Serial Setup Serial Communication

Copyright 2021 The MathWorks, Inc.

SelectedSignals

Tuning Status

Kp_Qaxis Kp_Speed

Ki_Qaxis Ki_Speed

Debug signals
* Speed Ref & Speed F
Id_Ref & Id_Feedback
lg_Ref & Iq_Feedback
la &1b

For details on serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

8. In the Host Serial Setup block parameters dialog box, select the Port name to which you have
connected the target hardware.

9. Turn the Motor slider switch to the Start position to start running the motor.

10. Update the reference speed value in the Speed Ref [RPM] field. It is recommended that you use
a value that is approximately half the rated speed of the motor.

4-33

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-34

11. In the Debug signals section, select Speed_Ref & Speed_Feedback and monitor the speed
signals in the SelectedSignals time scope. Wait until the motor reaches a steady speed.

The example can begin tuning only in the steady speed state.
12. Check that the PI Parameters slider switch is in the Autotuner position.

13. Turn the Autotuner slider switch to the Start position to start autotuning the PI controller gains.
The tuning process introduces perturbations depending on the controller goals (bandwidth and phase
margin) in the controller output. The example uses the system response to the perturbations to
calculate the optimal controller gain values.

The model performs these tests iteratively on the motor and determines an accurate set of Kp and Ki
gains for the current and speed PI controllers.

The Tuning Status display changes status from Tuning not started to Tuning in progress.

Note: When tuning is in progress, ensure that the PI Parameters slider switch remains in the
Autotuner position.

14. When the tuning process successfully completes, the Tuning Status display changes status from
Tuning in progress to Tuning complete.

The target model updates the speed and current PI controllers running on the target hardware with
the computed Kp and Ki gains. In addition, the host model displays these values.

15. If the gain-tuning algorithm encounters an error during the tuning process, the Tuning Status
display shows Tuning failed. Turn the Autotuner slider switch to the Stop position and see the
Troubleshooting section for the troubleshooting instructions.

16. If you have successfully completed the tuning process, turn the Autotuner slider switch to the
Stop position. Turn the PI Parameters slider switch to the Default position to enable the default
operating mode of the target model. In this mode, the target model uses the computed gain values to
operate the motor using FOC.

17. Validate the computed gain values. For instructions, see the Validate Computed PI Controller
Gains section.

Validate Computed PI Controller Gains

1. Check that the motor is running and that the PI Parameters slider switch is in the Default
position.

2. Select the Speed_Ref & Speed_Feedback debug signal in the Debug signals section of the host
model.

3. Open the SelectedSignals time scope to monitor the reference speed and speed feedback signals.

4, Update the reference speed (for your motor control application) in the Speed Ref [RPM] field and
monitor the signals in the time scope.

5. In the SelectedSignals window, navigate to Tools > Measurements and select Cursor
Measurements to display the Cursor Measurements area.

Tune PI Controllers Using Field Oriented Control Autotuner

4 SelectedSignals

File Tools View Simulation Help
© - Zoom In - e - Eﬂ—f@—
Zoom X
Zoom'Y
Zoom Out
Pan

Axes Scaling

Triggers

Measurements > Trace Selection

Cursor Measurements

Signal Statistics
Bilevel Measurements
Peak Finder

6. Drag cursor-1 to a position that indicates zero Speed Ref (just before Speed ref rises). Drag
cursor-2 to a position where Speed Feedback meets Speed Ref for the first time.

AT indicates the actual response time of the FOC algorithm (time taken by the motor to reach 100%
of the reference speed from zero reference speed).

4| SelectedSignals - O X
File Tools View Simulation Help o
@- 80P =R RN R |

* ¥ Trace Selection

Rx/signal_1:1 ~

* ¥ Cursor Measurements

Speed Feedback
~ (actual speed)

~. Speed Ref
(reference speed)

Rise time for Speed_Feedback
(to reach 100% of Speed_Ref
from 0% of Speed_Ref)

Ready Frame based Offset=0 T=37.890

4-35

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-36

7. For the speed PI controller, use the PI _params.SpeedBW variable available in the model
initialization script to determine the bandwidth of the speed PI controller. Compute the theoretical
response time using this relation:

2
PI _params.Speed BW

Response_time =

Compare the theoretical Response time with the actual response time AT to validate the speed PI
controller gains.

Similarly, you can validate the current PI controller gains by analyzing the step responses of the d
and q current PI controllers.

Troubleshooting

Follow these steps to troubleshoot failed gain-tuning instances.

1. Identify the loop (either d current, q current, or speed) for which the tuning process failed.
The target model tunes the PI controllers in this sequence:

d current controller = q current controller - speed controller

Tuning failure of one controller in this sequence results in incorrect gain-tuning for the subsequent
controllers.

Check the computed gains for the three controllers using the Display blocks available in the host
model. A zero Kp or Ki controller gain value indicates that the tuning process failed for the
respective controller.

Follow the subsequent steps for the first PI controller in the preceding sequence for which the tuning
failed.

2. Select the controller reference and feedback signals for the controller identified in step 1, in the
Debug signals section (for example, Iq_Ref & Iq_Feedback for the q current controller) and open
the SelectedSignals time scope.

3. Check that the PI Parameters slider switch is in the Autotuner position.
4. Turn the Autotuner slider switch to the Start position to run the tuning process again.

5. Monitor the feedback signal for the controller identified in step 1 (for example, Iq_ Feedback) in
the SelectedSignals time scope.

Case 1: Follow these steps if the peak value of the controller feedback signal satisfies one of these
conditions:

* Value is too high (greater than 1)

* Value is too low (less than PI params.CurrentSineAmp for the current controllers or less than
PI params.SpeedSineAmp for the speed controller)

Note: The PI_params.CurrentSineAmp and PI params.SpeedSineAmp variables are defined in
the model initialization script.

Tune PI Controllers Using Field Oriented Control Autotuner

a. If the controller identified in step 1 is the d or the q current controller, modify the
PI params.CurrentSineAmp variable such that it is less than the peak value of the controller
feedback signal.

b. If the controller identified in step 1 is the speed controller, modify the PI_params.SpeedSineAmp
variable such that it is less than the peak value of the controller feedback signal.

c. Turn the Autotuner slider switch to the Stop position and then to the Start position to run the
tuning process again.

Case 2: Follow these steps if the peak value of the controller feedback signal lies in the range:

" [PI_params.CurrentSine Amp, 1] (for the current controllers)

' [PI_params.SpeedSineAmp, 1]

for the speed controller)

Note: The PI params.CurrentSineAmp and PI params.SpeedSineAmp variables are defined in
the model initialization script.

a. Update the parameters of the Field Oriented Control Autotuner block (that set the reference
bandwidth and phase margin values) available in the FOC Autotuner parameters section of the
model initialization script.

b. Turn the Autotuner slider switch to the Stop position and then to the Start position to run the
tuning process again.

4-37

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Field-Oriented Control of PMSM Using Hall Sensor

4-38

This example implements the field-oriented control (FOC) technique to control the speed of a three-
phase permanent magnet synchronous motor (PMSM). The FOC algorithm requires rotor position
feedback, which is obtained by a Hall sensor. For details about FOC, see “Field-Oriented Control
(FOC)” on page 4-3.

This example uses the Hall sensor to measure the rotor position. A Hall effect sensor varies its output
voltage based on the strength of the applied magnetic field. A PMSM consists of three Hall sensors
located electrically 120 degrees apart. A PMSM with this setup can provide six valid combinations of
binary states (for example, 001,010,011,100,101, and 110). The sensor provides the angular position
of the rotor in the multiples of 60 degrees, which the controller uses to compute the angular velocity.
The controller can then use the angular velocity to compute an accurate angular position of the rotor.

|
[Hail 1

Hall 1

Hall 2

Hall 3

Models

The example includes these models:
* mcb pmsm foc hall f28069m
* mcb pmsm foc hall £28379d

You can use these models for both simulation and code generation. You can also use the open_system
command to open the Simulink® model. For example, use this command for a F28069M based
controller:

open_system('mcb_pmsm foc hall f28069m.slx"');

Field-Oriented Control of PMSM Using Hall Sensor

HW_INT

Code Generation

Field-Oriented Control for PMSM with Hall sensor

Note: This example requires a TI F28069m with DRV8312

connected to a PMSM Motor with Hall Sensor
Hardware Init

Heartbeat LED

Simulation i
]
S— SCI_Rx_INT() o ica rer o1
lobalHallStat - Duty Cycles, lab_Sim M
J—Q—- Speed el PU J \
— RT
allStateChangeFlag Desired Speed IdqRef_PU D *issteca s g [
Hall Sensor A
— Speed_fb| Pos_Sim
GlobalSpeedCount E Spesd_Meas PU ¥ Pos_Sim - - @
oo !
GlobalSpeedValidity Serial Receive Speed Control Current Control Inverter and Motor - Plant Model
Hall Sensor B
GlobalDirection
€CAP3 Interrupt() Explore more:
—— 1. Edit motor & inverler parameters
Hall Sensor C find out position offset
3. Update offset in Init script to variable
Copyright 2020 The MathWorks, Inc. ‘pmsm.PositionOffset’
—_——— 4, Build, Deploy & Start
IbOffset 5. Control motor via host model

6. Learn more about this example.

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products
To simulate model:

1. For the model: mcb_pmsm_foc_hall £28069m

Motor Control Blockset™
Fixed-Point Designer™

2. For the model: mcb_pmsm_foc_hall £28379d

Motor Control Blockset™
To generate code and deploy model:

1. For the model: mcb_pmsm_foc_hall f28069m

Motor Control Blockset™
Embedded Coder®
Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

Fixed-Point Designer™

2. For the model: mcb_pmsm_foc_hall £28379d

Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

4-39

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-40

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. To simulate the model, click Run on the Simulation tab.

3. To view and analyze the simulation results, click Data Inspector on the Simulation tab.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. You can also use the target model name to
open the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* F28069M controller card + DRV8312-69M-KIT inverter: mcb pmsm foc hall f28069m

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 7-2.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter: mcb pmsm foc hall f28069m

* LAUNCHXL-F28379D controller + (BOOSTXL-DRV8305 or BOOSTXL-3PHGANINV) inverter:
mcb pmsm foc hall f28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.

2. Complete the hardware connections.

Field-Oriented Control of PMSM Using Hall Sensor

3. The model automatically computes the Analog-to-Digital Converter (ADC) or current offset values.
To disable this functionality (enabled by default), update the value 0 to the variable
inverter. ADCOffsetCalibEnable in the model initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Compute the Hall sensor offset value and update it in the model initialization script associated with
the target model. For instructions, see “Hall Offset Calibration for PMSM Motor” on page 4-71.

5. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start on the Hardware tab to deploy the model to the hardware.
8. In the target model, click the host model hyperlink to open the associated host model. You can

also use the open_system command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb _host model f28069m.slx");

PMSM/BLDC Control

Steps:

1. Select port in Host Serial Setup, Host Serial Recaive
and Host Serial Transmit

2. Use 'Motor Start § Stop® switch to enable and disable

mator control
No port 3. Input speed request using ‘Reference Speed' text box
selected or sliding bar,
4, Observe the actual speed of moior and phase A current
in the scope.
Host Serial Setup 5 Slar!.ﬂ.'le moior in open loop under no load condition and
Oﬁ.’ transition to close loop for Sensorless Example. The
mode| works in open loop for speed ref below 0.1pu.
Speed (RPM) > D
L\‘ la (amps) >
Reference Speed ™ — "X
On

Motor Start / Stop

-6000 -3600 -1200 1200 3600 6000

Copyright 2020-2021 The MathWorks, Inc.

4-41

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

9. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

10. Update the Reference Speed value in the host model.
11. Click Run on the Simulation tab to run the host model.
12. Change the position of the Start / Stop Motor switch to On, to start running the motor.

NOTE: When you run this example on the hardware at a low Reference Speed, due to a known issue,
the PMSM may not follow the low Reference Speed.

13. Observe the debug signals from the RX subsystem, in the Time Scope of host model.

NOTE: If you are using a F28379D based controller, you can also select the debug signals that you
want to monitor.

4-42

Field-Oriented Control of PMSM Using Quadrature Encoder

Field-Oriented Control of PMSM Using Quadrature Encoder

This example implements the field-oriented control (FOC) technique to control the speed of a three-
phase permanent magnet synchronous motor (PMSM). The FOC algorithm requires rotor position
feedback, which is obtained by a quadrature encoder sensor. For details about FOC, see “Field-
Oriented Control (FOC)” on page 4-3.

This example uses the quadrature encoder sensor to measure the rotor position. The quadrature
encoder sensor consists of a disk with two tracks or channels that are coded 90 electrical degrees out
of phase. This creates two pulses (A and B) that have a phase difference of 90 degrees and an index
pulse (I). Therefore, the controller uses the phase relationship between A and B channels and the
transition of channel states to determine the direction of rotation of the motor.

Models

The example includes these models:

* mcb pmsm foc gep f28069m

* mch pmsm foc gep f28069LaunchPad
* mcb pmsm foc gep £28379d

You can use these models for both simulation and code generation. You can also use the open_system
command to open the Simulink® models. For example, use this command for a F28069M based
controller.

open_system('mcb _pmsm foc gep f28069m.slx");

4-43

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Code generation — 1
5—1_

Field-Oriented Control for PMSM with QEP sensor

Note: This example requires a Tl F28069m with DRV8312
connected to a PMSM Motor with QEP Sensor

4

I () initialize

Hardware Init

Heartbeat LED

Trigger{)
Idq_ref_PU Duty Cycles

Feedbacks_sim Speed_meas_PU

L] Duty_Cycles Faedbacks_sim —pm

Current Control

Inverter and Motor - Plant Model

- A 4
Simulation SCI_Rx_INT()
eed_Rel_P
- Spoad_ R PU ,—'.-'
I Desired Speed IdgRef_PU|
ErCmedion Speed_Meas_PU [sim_fb]
SDfeet Serial Receive Speed Control
SpeedRel

4-44

Copyright 2020 The MathWorks, Inc.

Explore more:

1. Edit motor & inverter parameters

2. Use Offset Computation medel to find
out position offset.

3. Update offset in Init script to variable
'‘pmsm.PositionOffset'

4. Build, Deploy & Start

5. Control motor via host model

6. Learn more about this example.

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products

To simulate model:

1. For the models: mcb_pmsm_foc_qgep_f28069m and mcb_pmsm_foc_gep_f28069LaunchPad

* Motor Control Blockset™
* Fixed-Point Designer™

2. For the model mcb_pmsm_foc_qgep _£28379d

Motor Control Blockset™

To generate code and deploy model:

1. For the models: mcb_pmsm_foc_gep f28069m and mcbh_pmsm_foc_gep f28069LaunchPad

* Motor Control Blockset™
* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

* Fixed-Point Designer™

2, For the model mcb_pmsm_foc_qep _f28379d

* Motor Control Blockset™
 Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

* Fixed-Point Designer™ (only needed for optimized code generation)

Field-Oriented Control of PMSM Using Quadrature Encoder

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector on the Simulation tab to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. You can also use the target model name to
open the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* F28069M control card + DRV8312-69M-KIT inverter: mch pmsm foc gep f28069m

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 7-2.

¢ LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb pmsm foc gep f28069LaunchPad

e« LAUNCHXL-F28379D controller + (BOOSTXL-DRV8305 or BOOSTXL-3PHGANINV) inverter:
mcb pmsm foc gep f28379d

4-45

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-46

NOTE: When using BOOSTXL-3PHGANINV inverter, ensure that proper insulation is available
between bottom layer of BOOSTXL-3PHGANINV and the LAUNCHXL board.

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions, see “Quadrature Encoder Offset Calibration for
PMSM Motor” on page 4-80.

NOTE: Verify the number of slits available in the quadrature encoder sensor attached to your motor.
Check and update the variable pmsm.QEPS1its available in the model initialization script. This
variable corresponds to the Encoder slits parameter of the quadrature encoder block. For more
details about the Encoder slits and Encoder counts per slit parameters, see Quadrature Decoder.

5. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model. For example, use this command for a
F28069M based controller.

open_system('mcb host model f28069m.slx');

Field-Oriented Control of PMSM Using Quadrature Encoder

PMSM/BLDC Control

Steps:
1. Select port in Host Serial Setup, Host Serial Receive
and Haost Serial Transmit.
2. Use 'Motor Start / Stop” switch to enable and disable
mator control,
No port 3 Inpu_! ;peed request using 'Reference Speed' text box
salectad or sliding bar.
4. Observe the actual speed of motor and phase A current
in the scope.
Host Serial Setup 5. S1arl_ﬂ_'-e maotor in open loop under no load condition and
Oﬂ-’ transition to close loop for Sensorless Example. The
model works in open loop for speed ref below 0.1pu.

Spead (RPM) Ly
1200 | L
k‘\ y I (amps) L

Rx

Reference Speed ™

Motor Start / Stop

-6000 -3600 -1200 1200 3600 6000

Copyright 2020-2021 The MathWaorks, Inc.

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

9. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

10. Update the Reference Speed value in the host model.

11. Click Run on the Simulation tab to run the host model.

12. Change the position of the Start / Stop Motor switch to On, to start running the motor.
13. Observe the debug signals from the RX subsystem, in the Time Scope of host model.

Note: If you are using a F28379D based controller, you can also select the debug signals that you
want to monitor.

4-47

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Field-Weakening Control (with MTPA) of PMSM

4-48

This example implements the field-oriented control (FOC) technique to control the torque and speed
of a three-phase permanent magnet synchronous motor (PMSM). The FOC algorithm requires rotor
position feedback, which is obtained by a quadrature encoder sensor. For details about FOC, see
“Field-Oriented Control (FOC)” on page 4-3.

Field-Weakening Control

When you use the FOC algorithm to run a motor with rated flux, the maximum speed is limited by the
stator voltages, rated current, and back emf. This speed is called the base speed. Beyond this speed,
the operation of the machine is complex because the back emf is more than the supply voltage.
However, if you set the d-axis stator current (Id) to a negative value, the rotor flux linkage reduces,
which allows the motor to run above the base speed. This operation is known as field-weakening
control of the motor.

Field Weakening Control
A 1

Stator
voltage

Torque

Stator current /
/ Rotor flux

Rotor Speed — Base
Speed

Depending upon the connected load and rated current of the machine, the reference d-axis current

(J'lr il) in the field-weakening control also limits the reference g-axis current ("!r i7), and therefore, limits
the torque output. Therefore, the motor operates in the constant torque region until the base speed.
It operates in the constant power region with a limited torque above the base speed, as illustrated in
the preceding figure.

The computations for the reference current | il depend on the motor and inverter parameters.

Field-Weakening Control (with MTPA) of PMSM

Note:

* For some surface PMSMs, (depending upon the parameters) it may not be possible to achieve
higher speeds at the rated current. To achieve higher speeds, you need to overload the motor with
maximum currents that are higher than the rated current (if the thermal conditions of the
machine are within the permissible limits).

* When you operate the motor above the base speed, we recommend that you monitor the
temperature of the motor. During motor operation, if the motor temperature rises beyond the
temperature recommended by the manufacturer, turn-off the motor for safety reasons.

* When you operate the motor above the base speed, we recommend that you increment the speed
reference in small steps, to avoid the dynamics of field weakening that can make some systems
unstable.

Maximum Torque Per Ampere (MTPA)
L

g
For the interior PMSMs, the saliency in the magnetic circuit of rotor results in higher L4 ratio
(greater than 1). This produces reluctance torque in the rotor (in addition to the existing

electromagnetic torque). For more information, see MTPA Control Reference.

|

Therefore, you can operate the machine at an optimum combination of Iq and ~4, and obtain a

— /72 2
) Inm_\: — ‘r”' T f{q
higher torque for the same stator current, .

This increases the efficiency of the machine, because the stator current losses are minimized. The

algorithm that you use to generate the reference £ il and 1 i currents for producing maximum torque
in the machine, is called Maximum Torque Per Ampere (MTPA).

4-49

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Ly < Lq i Ty T,>Tg

Current Limited
Circle

Field Weakening Region
Voltage Limited Ellipse

Wg > Wy

For an Interior PMSM (IPMSM), this example computes the reference ' o and I g currents using the
MTPA method until the base speed. For a Surface PMSM (SPMSM), the example achieves MTPA
operation by using a zero d-axis reference current, until the base speed.

To operate the motor above the base speed, this example computes the reference I il and I iq for
MTPA and field-weakening control, depending upon the motor type. For a Surface PMSM, Constant
Voltage Constant Power (CVCP) control method is used. For an Interior PMSM, Voltage and Current
Limited Maximum Torque (VCLMT) control method is used.

For information related to MTPA Control Reference block, see MTPA Control Reference.
Target Communication

For hardware implementation, this example uses a host and a target model. The host model, running
on the host computer, communicates with the target model deployed to the hardware connected to
the motor. The host model uses serial communication to command the target model and run the
motor in a closed-loop control.

Both field-weakening control and MTPA require generation of reference currents that follow the
limitations related to:

e Current limited circle

4-50

Field-Weakening Control (with MTPA) of PMSM

* Voltage limited ellipse
* Motor temperature

To determine the operating point that follows these limits, see the plot generated by the function
“Obtain Motor Characteristics” on page 3-17.

In the field-weakening region, some PMSMs may need a stator current that is higher than the rated
current of the motor. For details, see the plot generated by the function “Obtain Motor
Characteristics” on page 3-17.

Models

This example uses multiple models for these hardware configurations:

Speed control of PMSM with field-weakening and MTPA:

* mcb pmsm fwc gep f28069LaunchPad

* mcbh pmsm fwc gep f28379d

Speed control of Interior PMSM (IPMSM) with field-weakening and MTPA:

* mcb ipmsm fwc gep f28379d

Note: This model uses the ADLEE-BM-180E IPMSM parameters that are defined in the model
initialization script. ADLEE-BM-180E IPMSM has a saliency of approximately 10% (L i is

approximately 10% higher than er). Because of low saliency, this motor demands higher h i
currents to enter the field-weakening region and run at speeds higher than the rated speed. However,
the motor has a rated current of only 9A. Therefore, when you run this motor in the field-weakening

region, the low saliency makes the motor draw high & il currents quickly (and quickly reach the rated
curent limit) while gaining only a limited speed increase above the base speed. You can use this
model to achieve higher speeds above the base speed by using an IPMSM that has a higher saliency.

Torque control of PMSM with MTPA:
* mcb pmsm mtpa qep f28069LaunchPad
* mcb pmsm mtpa qep f28379d

You can use these models for both simulation and code generation. You can also use the open_system
command to open the Simulink® models. For example, use this command for a F28069M based
controller:

open_system('mcb pmsm fwc gep f28069LaunchPad.slx');

4-51

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

PMSM Field Weakening Control with MTPA

Note: This example requires a TI F28069m LaunchPad with a BOOSTXL-DRV8305

booster pack connected to a PMSM Motor with QEP Sensor

1
U —
Cede generation | Hardware Init
>
HW_INT
Heartbeat LED
Simulation ¥
SCI_Rx_INT() Trigger()
Global Variables E Idg_raf_PU Duty_Cycles g
RT2 RT3
| Enable | EnCIuse:ILnop| Speed_fo Idq_ref Duty_Cycles Faeanacks—b'
| Enable_fwe || laOffset | Feedbacks_sim Speed_fb E
RT4 RT1
| Speed_ref || IbOffset | Serial Receive Speed Control Current Control Inverter and PMSM
Debug_signals
Explore more:

Note:
1) To achieve higher speeds, increase the "Max current” value in

“Speed Control | MTPA Control Reference” block (e.0. Set 10 2xirated).
2) Itis recommended to monitor molor's lemperature for operation

above base speed, while working with hardware.

Required MathWorks® Products

To simulate model:

Copyright 2020-2021 The MathWorks, Inc.

1. For the models: mcb_pmsm_fwc_gep_f28069LaunchPad and
mcb_pmsm_mtpa_gep f28069LaunchPad

1. Edit motor & inverter parameters

2. Simulate this model

3. Review results in Data Inspector

3. Calibrate QEP offset

4. Update motor parameters with
QEP offset

5. Generate code from hardware tab
with "Build, Deploy & Start™

6. Control motor via host model

7. Leam more about this example.

4-52

* Motor Control Blockset™
* Fixed-Point Designer™

2. For the models: mcb_pmsm_fwc_qgep_f28379d and mcb_pmsm_mtpa_qep_f28379d

* Motor Control Blockset™
To generate code and deploy model:

1. For the models: mcb_pmsm_fwc_gep_f28069LaunchPad and
mcb_pmsm_mtpa_gep_f28069LaunchPad

* Motor Control Blockset™
* Embedded Coder®
* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

* Fixed-Point Designer™
2, For the models: mcb_pmsm_fwc_qgep_f28379d and mcb_pmsm_mtpa_qep_f28379d

* Motor Control Blockset™
 Embedded Coder®

Field-Weakening Control (with MTPA) of PMSM

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor,
inverter, and position sensor calibration parameters in the model initialization script associated with
the Simulink® models. For instructions, see “Estimate Control Gains and Use Utility Functions” on
page 3-2.

If you use the parameter estimation tool, you can update the inverter and position sensor calibration
parameters, but do not update the motor parameters in the model initialization script. The script
automatically extracts motor parameters from the updated motorParam workspace variable.

Simulate (Speed Control and Torque Control) Models

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector on the Simulation tab to view and analyze the simulation results.
Analyze simulation results for Speed Control Model

The model uses the per-unit system to represent speed, currents, voltages, torque, and power. Type
PU System at the workspace to see the conversion of one per-unit value into SI units for these
quantities.

Observe the dynamics of the system for the speed and current controllers. In addition, notice the
negative Id currents for motor operation above the base speed.

4-53

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

W Speed_ref ® Speed_fb

14
o J ‘.“
-1 “\
-2 \/
0 0.2 04 0.6 0.8 10 12 14 16 18 20 22 24 26 28 30
mid_fo mld_ref
0.5
04
05
0 0.2 0.4 0.6 0.8 10 12 14 16 18 20 22 24 2.6 28 3.0
W Iq_ref mlig_fb
s \(N,
0
05 4
0 0.2 0.4 06 0.8 1.0 1.2 1.4 1.6 1.8 20 22 2.4 28 28 3.0

4-54

Note:

For some surface PMSMs, (depending upon the parameters) it may not be possible to achieve
higher speeds at the rated current. To achieve higher speeds, you need to overload the motor with
maximum currents that are higher than the rated current (if the thermal conditions of the
machine are within the permissible limits).

When you operate the motor above the base speed, we recommend that you monitor the
temperature of motor. During motor operation, if the motor temperature rises beyond the
temperature recommended by the manufacturer, turn-off the motor for safety reasons.

When you operate the motor above the base speed, we recommend that you increment the speed
reference in small steps, to avoid the dynamics of field weakening that can make some systems
unstable.

In the beginning, the example runs the motor in open-loop control. After it detects the index pulse
of the quadrature encoder sensor, the motor starts running using a closed-loop control. A start-up

Field-Weakening Control (with MTPA) of PMSM

algorithm takes approximately 0.5 seconds to perform this transition. Ignore any transients
observed in the speed and position feedback signals during this initial period.

Analyze simulation results for Torque Control Model

Run simulation with the Id and Iq reference currents generated by these three methods:

1. Generate reference currents by using the MTPA Control Reference Block.

2. Generate the MTPA reference currents manually by using the Vector Control Reference Block.
3. Generate the Control Reference without MTPA.

The first method uses mathematical computations to determine the reference currents Id and Iq,
after assuming linear inductances.

Use the second method to manually generate the MTPA look-up tables for motors with non-linear
inductances. You can illustrate this with the Id and Iq references generated by sweeping the torque
angle between +(11/2) to -(11/2).

Use the last method to obtain the reference currents without the MTPA algorithm.

You can compare the torque and power generated by these three methods in the data inspector.

4-55

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Te_MTPA_manual (Nm) B Te_MTPA (Nm) = Te_NO_MTPA (Nm)

0.2 4

0.34

0.34 |+

0.27

0.1

0.2

Id_fb

0.4 0.5 0.6 07 0.8 0.9 10 11 12 13 14 15 16 17 1.8 19 20

Id_ref mlg_ref mig_fb

o
(%]

skt

0.1

0.2

® Pe_MTPA_manual (W) ® Pe_MTPA (W) m Pe_NO_MTPA (W)

IEE o+ o5 oe o7 o8 o8 10 11 12 12 14 15 18 17 18 19 20

56.8 F——
56.8
454

0.1

4-56

02

0.4 05 06 07 08 00 10 11 12 13 14 15 18 17 18 19 20

In the preceding example, you can notice that the electrical torque generated using MTPA is 0.34PU
whereas electrical torque generated without MTPA is 0.27PU. You can also notice that with a varying
torque angle, the maximum generated torque matches the torque produced by MTPA. The negative d-
axis current indicates that the MTPA utilizes the reluctance torque for interior PMSM.

NOTE: If you are working with Surface PMSM, change the Type of motor parameter from Interior
PMSM to Surface PMSM, in the MTPA Control Reference block located at the location: "Torque
Contro\MTPA Reference\MTPA Control Reference."

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the FOC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host

Field-Weakening Control (with MTPA) of PMSM

model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. You can also use the target model name to
open the model for the corresponding hardware configuration, from the MATLAB® command prompt.

¢ LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb pmsm fwc gep f28069LaunchPad and mcb pmsm mtpa gep f28069LaunchPad

¢ LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb pmsm fwc gep f28379d
and mcb pmsm mtpa qgep f28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Run Models to implement speed and torque control with field-weakening and MTPA
1. Simulate the model and analyze the simulation results by using the preceding section.
2. Complete the hardware connections.

3. The torque control model requires an Interior PMSM with QEP Sensor, driven by an external
dynamometer with speed control (that uses the speed control model).

4. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value zero to the variable inverter. ADCOffsetCalibEnable in the
model initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

5. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions, see “Quadrature Encoder Offset Calibration for
PMSM Motor” on page 4-80.

6. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

7. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

8. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
9. Click the host model hyperlink in the target model to open the associated host model. You can

also use the open_system command to open the host model. For example, use this command for speed
control implementation:

open_system('mcb _pmsm fwc host model.slx');

4-57

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

PMSM Field Weakening Control Host

Mo port
selected

Host Serial Setup

Off Off

Steps:

1. Update workspace with variables used in target model

2. Select port in Host Serial Setup, Host Senal Receive and
3. Use 'Motor Start / Stop’ switch to control maotor.

4, Imput speed request using 'Reference Speed block,

5. Observe the debug signals in scope.

Debug signals
@ Speed_ref & Speed_feedt
Old_ref & Id_feedback

-~
Olq_ref & |q_feedback
On On
Start / Stop Start / Stop Motor
Field Weakening Caontrol
Scope [Per-Unit) L D
2000 B Speed_ref (rpm) Debug1 (31 units) » SelectedSignals
Reference Speed (RPM) Debug? (S units) > | |
Data_Conditioning_Tx Data_Conditioning_Rx

Copyright 2020 The MathWorks, Inc,

4-58

Field-Weakening Control (with MTPA) of PMSM

aL = [=] 5%

File Tool= Yiew Simulation Help e

Q- OPE - <w-[EH-FA-

Ready

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

10. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

11. In the Speed control model, update the Reference Speed (RPM) block value. In the Torque control
model, update the current request using Imag Reference block.

12. Click Run on the Simulation tab to run the host model.
13. Change the position of the Start / Stop Motor switch to On, to start and stop running the motor.

14. Enter different reference speeds (or currents) and observe the debug signals from the RX
subsystem, in the Time Scope of host model.

Note

» If the position offset is incorrect, this example can lead to excessive currents in the motor. To
avoid this, ensure that the position offset is correctly computed and updated in the workspace
variable: pmsm.PositionOffset.

* When you operate the motor above the base speed, we recommend that you monitor the
temperature of motor. During motor operation, if the motor temperature rises beyond the
temperature recommended by the manufacturer, turn-off the motor for safety reasons.

* When you operate the motor above the base speed, we recommend that you increment the speed
reference in small steps, to avoid the dynamics of field weakening that can make some systems
unstable.

References

4-59

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-60

[1] B. Bose, Modern Power Electronics and AC Drives. Prentice Hall, 2001. ISBN-0-13-016743-6.

[2] Lorenz, Robert D., Thomas Lipo, and Donald W. Novotny. "Motion control with induction motors."
Proceedings of the IEEE, Vol. 82, Issue 8, August 1994, pp. 1215-1240.

[3] Morimoto, Shigeo, Masayuka Sanada, and Yoji Takeda. "Wide-speed operation of interior
permanent magnet synchronous motors with high-performance current regulator." IEEE Transactions
on Industry Applications, Vol. 30, Issue 4, July/August 1994, pp. 920-926.

[4] Li, Muyang. "Flux-Weakening Control for Permanent-Magnet Synchronous Motors Based on Z-
Source Inverters." Master's Thesis, Marquette University, e-Publications@Marquette, Fall 2014.

[5] Briz, Fernando, Michael W. Degner, and Robert D. Lorenz. "Analysis and design of current
regulators using complex vectors." IEEE Transactions on Industry Applications, Vol. 36, Issue 3, May/
June 2000, pp. 817-825.

[6] Briz, Fernando, et al. "Current and flux regulation in field-weakening operation [of induction
motors]." IEEE Transactions on Industry Applications, Vol. 37, Issue 1, Jan/Feb 2001, pp. 42-50.

[7]1 TI Application Note, "Sensorless-FOC With Flux-Weakening and MTPA for IPMSM Motor Drives."

Sensorless Field-Oriented Control of PMSM

Sensorless Field-Oriented Control of PMSM

This example implements the field-oriented control (FOC) technique to control the speed of a three-
phase permanent magnet synchronous motor (PMSM). For details about FOC, see “Field-Oriented
Control (FOC)” on page 4-3.

This example uses the sensorless position estimation technique. You can select either the sliding
mode observer or flux observer to estimate the position feedback for the FOC algorithm used in the
example.

The Sliding Mode Observer (SMO) block generates a sliding motion on the error between the
measured and estimated position. The block produces an estimated value that is closely proportional

L
to the measured position. The block uses stator voltages ((L3 V -Ii') and currents (I oy I .f) as
inputs and estimates the electromotive force (emf) of the motor model. It uses the emf to further
estimate the rotor position and rotor speed. The Flux Observer block uses identical inputs
(HH Vi-. Iﬂ: Ii)

to estimate the stator flux, generated torque, and the rotor position.

To ensure that the detected rotor position is accurate, add the inverter board resistance value to the
stator phase resistance parameter of the motor block and the stator resistance parameter of the
Sliding Mode Observer and Flux Observer blocks.

If you use flux observer, the example can run both PMSM and brushless DC (BLDC) motors.

The sensorless observers and algorithms have known limitations regarding motor operations beyond
the base speed. We recommend that you use the sensorless examples for operations upto base speed
only.

Models

The example includes these models:

* mcbh pmsm foc sensorless f28069MLaunchPad
* mcb pmsm foc sensorless £28379d

You can use these models for both simulation and code generation. You can also use the open_system
command to open a model. For example, use this command for a F28069M based controller:

open_system('mcb pmsm foc sensorless f28069MLaunchPad.slx');

4-61

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Postion Estimator

Permanent Magnet Synchronous Motor Field Oriented Control

+ Sliding mode obs¢

4-62

I
=

Note: This example requires a TI F28069m LaunchPad with a BOOSTXL-DRV8305

INT'

Code generation

booster pack connected to a PMSM Motor

HW_INT

Simulation SCI_Rx_INT()

Enable
Desired Speed

EnClosedLoop

Speed_ref Serial Receive

laOffset

h

() initialize

Hardware Init

Heartbeat LED

Speed_Ref_PU
IdqRat_ PU

Speed_Meas_PU D_.

Idq_ref_PLU

Feedbacks_sim Speed_meas PUL—

Trigger)

Duty Cycles |y

Duty_Cycles Feedbacks_sim

Speed Control

Current Control Inverter and Motor - Plant Model

Copyright 2020 The MathWorks, Inc.

Explore more:

1. Edit motor & inverter parameters

2. Simulate this model

3. Review results in Data Inspector

4. Build, Deploy & Start

5. Control motor via host model

6. Start the motor in open loop and transition to close loop.

The model works in open loop for speed ref below 0.1pu.
7. Leam more about this example.

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products

To simulate model:

1. For the model: mcb_pmsm_foc_sensorless f28069MLaunchPad

Fixed-Point Designer™

Motor Control Blockset™

2. For the model: mcb_pmsm_foc_sensorless _£28379d

Motor Control Blockset™

To generate code and deploy model:

1. For the model: mcb_pmsm_foc_sensorless f28069MLaunchPad

* Motor Control Blockset™

 Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

» Fixed-Point Designer™

2. For the model: mcb_pmsm_foc_sensorless £28379d

* Motor Control Blockset™

« Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

» Fixed-Point Designer™ (only needed for optimized code generation)

Sensorless Field-Oriented Control of PMSM

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions , see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Sliding Mode Observer parameters require tuning if you are using Sliding Mode Observer with the
motor parameters estimated using the parameter estimation tool.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. To simulate the model, click Run on the Simulation tab.

3. To view and analyze the simulation results, click Data Inspector on the Simulation tab.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports these hardware configurations. You can also use the target model name to
open the model for the corresponding hardware configuration, from the MATLAB® command prompt.

+ LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb pmsm foc sensorless f28069MLaunchPad

* LAUNCHXL-F28379D controller + (BOOSTXL-DRV8305 or BOOSTXL-3PHGANINV) inverter:
mcb pmsm foc sensorless f28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

4-63

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2, Complete the hardware connections.

3. The model automatically computes the Analog-to-Digital Converter (ADC) or current offset values.
To disable this functionality (enabled by default), update the value 0 to the variable
inverter. ADCOffsetCalibEnable in the model initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

5. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED using GPIO31 (c28379D cpu2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

6. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

7. In the target model, click the host model hyperlink to open the associated host model. You can
also use the open system command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb host model f28069m.slx"');

PMSM/BLDC Control

Staa:

1. Select port in Host Serial Setup, Host Serial Receive
and Host Serial Transmit

2. Use "Molor Start / Stop” switch o enable and disable

mator cantrol
Mo port 3. Input speed request using ‘Reference Speed' text box
selected or sliding bar.
4. Observe the actual speed of motor and phase A current
in the scope,
Host Serial Setup 5 51ar!_1]_13 motor in open loop under no load condition and
Oﬁ-’ transition to close loop for Sensorless Example. The
madel works in open loop for speed ref below 0.1pu.
Spead (RPM) » [:]
k\. la (amps) >
Reference Speed ™ "’ RX
On

Motor Start / Stop

-6000 -3600 -1200 1200 3600 6000

Copyright 2020-2021 The MathWaorks, Inc.

4-64

Sensorless Field-Oriented Control of PMSM

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

8. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

9. Update the Reference Speed value in the host model.
NOTE:

* Before you run the motor at the required Reference Speed (by using either Sliding Mode Observer
or Flux Observer), start running the motor at 0.1 x pmsm.N_base speed by using open-loop
control. Then transition to closed-loop control by increasing the speed to 0.25 x pmsm.N _base
(where, pmsm.N base is the MATLAB workspace variable for base speed of the motor).

* High acceleration and deceleration may affect the sensorless position computation.
10. Click Run on the Simulation tab to run the host model.

11. Change the position of the Start / Stop Motor switch to On, to start running the motor in the
open-loop condition (by default, the motor spins at 10% of base speed).

NOTE: Do not run the motor (using this example) in the open-loop condition for a long time duration.
The motor may draw high currents and produce excessive heat.

We designed the open-loop control to run the motor with a Reference Speed that is less than or equal
to 10% of base speed.

When you run this example on the hardware at a low Reference Speed, due to a known issue, the
PMSM may not follow the low Reference Speed.

12. Increase the motor Reference Speed beyond 10% of base speed to switch from open-loop to
closed-loop control.

NOTE: To change the motor's direction of rotation, reduce the motor Reference Speed to a value less
than 10% of the base speed. This brings the motor back to open-loop condition. Change the direction
of rotation but keep the Reference Speed magnitude as constant. Then transition to the closed-loop
condition.

13. Observe the debug signals from the RX subsystem, in the Time Scope of host model.
NOTE:

* A high reference speed and a high reference torque can affect the Sliding Mode Observer block
performance.

» Ifyou are using a F28379D based controller, you can also select the debug signals that you want
to monitor.

Other Things to Try

You can use SoC Blockset™ to implement a sensorless closed-loop motor control application that
addresses challenges related to ADC-PWM synchronization, controller response, and studying
different PWM settings. For details, see “Integrate MCU Scheduling and Peripherals in Motor Control
Application” on page 4-134.

4-65

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

You can also use SoC Blockset™ to develop a sensorless real-time motor control application that
utilizes multiple processor cores to obtain design modularity, improved controller performance, and

other design goals. For details, see “Partition Motor Control for Multiprocessor MCUs” on page 4-
143.

4-66

Field-Oriented Control of PMSM Using SI Units

Field-Oriented Control of PMSM Using Sl Units

HW_INT

Code generation

HW_INT

Simulation

EnClosedLoop

Speed_ref

o)

Debug_signals

This example implements the Field-Oriented Control (FOC) technique to control the speed of a three-
phase Permanent Magnet Synchronous Motor (PMSM). However, instead of the per-unit
representation of quantities(for details about the per-unit system, see “Per-Unit System” on page 6-
20), the FOC algorithm in this example uses the SI units of signals to perform the computations.
These are the signals and their SI units:

* Rotor speed - Radians/ sec
* Rotor position - Radians

* Currents - Amperes

* Voltages - Volts

Field-oriented control (FOC) needs a real time feedback of the rotor position. This example uses the
quadrature encoder sensor to measure the rotor position. For details about FOC, see “Field-Oriented
Control (FOC)” on page 4-3.

Models
The example includes the model mcbh pmsm foc qep f28379d SIUnit.

You can use this model for both simulation and code generation. You can also use the open_system
command to open the Simulink® model. For example, use this command for a F28379D based
controller:

open_system('mcb pmsm foc gep f28379d SIUnit.slx');

Permanent Magnet Synchronous Motor Field Oriented Control in Sl units

Note: This example requires a TI F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack or BOOSTXL-3PhGaNInv
connected to a PMSM Motor with QEP Sensor

() initialize

Hardware Init

Heartbeat LED

SCI_Rx_INT() Trigger()

Speed_Ref Idq_ref Duty Cycles
Desired Speed |~ T IdgRef Duty_Cycles Feedbacks_sim —bﬂ
Spead_MBas [sim_fb] Feedbacks_sim Speed_meas |——
RT1
Serial Receive Speed Control Current Control Inverter and Motor - Plant Model
Explore more:

1. Edit motor & inverter parameters
2. Use Offset compuation model to find
out position offset.
3. Update offset in Init script to variable
Copyright 2020 - 2021 The MathWaorks, Inc. 4 BEEISB:T);?E‘:;E:“L
5. Control motor via host model
6. Learn more about this example.

Required MathWorks® Products

To simulate model:

4-67

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

* Motor Control Blockset™

To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open the model included with this example.

2, Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector on the Simulation tab to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target model and run the motor in a closed-loop control.

Required Hardware

The example supports this hardware configuration. You can also use the target model name to open
the model for the corresponding hardware configuration, from the MATLAB® command prompt.

 LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter:
mcb pmsm foc gep f28379d SIUnit

4-68

Field-Oriented Control of PMSM Using SI Units

For connections related to the preceding hardware configuration, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions, see “Quadrature Encoder Offset Calibration for
PMSM Motor” on page 4-80.

5. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb _pmsm SIUnit host model.slx');

4-69

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Prerequisites:
1. Deploy the target model to the hardware

mch_pmsm_foc_gep f28379d_SiUnit

2 You should see and verify the variables from
the target model in the base workspace.

Steps:
1. Select port in Host Serial Setup,
Host Serial Receive and
Host Serial Transmit
2. Simulate this model
3. Use Start/ Stop Motor switch to control the
motor,
4. Enter Reference speed in RPM using
edit box

FOC Host for Sl Unit Example

Scope signals
» Speed Contro
Id Control
Igq Control

(=

1500 Stop Start
Reference Speed
[RPM] Mator
No port Signal 1
I
selaciad Signal 2
Host Serial Setup Serial Communication

Copyright 2020-2021 The MathWorks, Inc.

Scope

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

9. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial

Transmit, and select a Port.

10. Update the Reference Speed value in the host model.

11. Click Run on the Simulation tab to run the host model.

12. Change the position of the Start / Stop Motor switch to On, to start running the motor.

13. Observe the debug signals from the RX subsystem, in the Time Scope of host model.

4-70

Hall Offset Calibration for PMSM Motor

Hall Offset Calibration for PMSM Motor

This example calculates the offset between the rotor direct axis (d-axis) and position detected by the
Hall sensor. The field-oriented control (FOC) algorithm needs this position offset to run the
permanent magnet synchronous motor (PMSM) correctly. To compute the offset, the target model

runs the motor in the open-loop condition. The model uses a constant Kﬁ‘ (voltage along the stator's

d-axis) and a zero H‘! (voltage along the stator's g-axis) to run the motor (at a low constant speed) by
using a position or ramp generator. When the position or ramp value reaches zero, the corresponding
rotor position is the offset value for the Hall sensors.

The control algorithm (available in the field-oriented control and parameter estimation examples)
uses this offset value to compute an accurate position of d-axis of the rotor. The controller needs this
offset to optimally run the PMSM.

Models

This example includes these models:
* mcb pmsm hall offset f28069m
* mcb pmsm hall offset f28379d

You can use these models only for code generation. You can also use the open system command to
open the Simulink® models. For example, use this command for a F28069M based controller:

open _system('mcb pmsm hall offset f28069m.slx');

Offset Computation with Hall sensor

Note: This example requires a Tl F28069m controller card mounted on DRV8312 inverter
connected to a PMSM Motor with Hall Sensor

1. Enter parameters in the Configuration panel.

2. Click Build, Deploy & Start in the Hardware tab.

3. Perform calibration by using host model.

4. If the motor does not start or rotate smoothly, increase

Vd Ref in Per Unit voltage (that can have a maximum
value of 1) in the Configuration panel.

5. If the current drawn by the connected motor is too high,

Global

C28x

4

; - Interrupt -
reduce the value mentioned in step 4. Hardware Interopt @CAPT Intermupt()
6. Leam more about this example. HallStateChangeFlag
T —— Hall Sensor A
- GlobalSpeedCount Y Y
Configuration obalzpaedCount SCI_Rx_INT() Trigger)
SCAPZ Interruph])
PWM Frequency [Hz] 20000 LED Hall Sensor B Serial Receive Offset Calculation
GlobalDirection
Data type for control] 2CAP3 Intermupt()
algorithm sing le -
voltage 0.15 Hall Sensor ©

Copyright 2020-2021 The MathWorks, Inc.

For the model names that you can use for different hardware configurations, see the Required

Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products

To generate code and deploy model:

4-71

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

1. For the model: mcb_pmsm_hall offset_f28069m

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
» Fixed-Point Designer™

2. For the model: mcb_pmsm_hall offset_f28379d

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
+ Fixed-Point Designer™ (only needed for optimized code generation)

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the motor by using open-loop control.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board.

The host model uses serial communication to command the target model and run the motor in an
open-loop configuration. You can use the host model to control the motor rotations and validate
direction of rotation of the motor. The Incorrect motor direction LED in the host model turns red to
indicate that the motor is running in the opposite direction. When the LED turns red, you must
reverse the motor phase connections to change the direction of rotation. The host model displays the
calculated offset value.

Required Hardware

This example supports these hardware configurations. You can also use the target model name to
open the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* F28069M controller card + DRV8312-69M-KIT inverter: mcb pmsm hall offset f28069m

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 7-2.

* LAUNCHXL-F28379D controller + (BOOSTXL-DRV8305 or BOOSTXL-3PHGANINV) inverter:
mcb pmsm hall offset f28379d

To configure the model mcb_pmsm_hall offset_f28379d, set the Inverter Enable Logic field (in
the Configuration panel of target model) to:

* Active High: To use the model with BOOSTXL-DRV8305 inverter.
* Active Low: To use the model with BOOSTXL-3PHGANINYV inverter.

For connections related to the preceding hardware configuration, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware

1. Complete the hardware connections.

4-72

Hall Offset Calibration for PMSM Motor

2. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration

Parameters” on page 2-2.

3. Update the motor parameters in the Configuration panel of the target model.

* Number of Pole Pairs
* PWM Frequency [Hz]

* Data type for control algorithm

* Vd Ref in Per Unit voltage

4. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

5. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

6. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open system command to open the host model. For example, use this command for a

F28069M based controller:

open_system('mcb_pmsm host offsetComputation f28069m.slx"');

PMSM Position Sensor (Hall / QEP) Offset

Prerequisites:
1. Deploy the target model to the hardware

mcbh_pmsm_hall offset 128068m

mch pmsm_gep offset f28069m

mch_pmsm_gep offset f280689mLaunchPad
2.You should see and verify the variables from

the target model in the base workspace.

Steps:

1. Select port in Host Serial Setup,
Host Serial Receive and
Host Serial Transmit

2. Simulate this model to start calibration.
Motor starts running when calibration begins

3. After calibration completes, simulation ends
and motor stops automatically.

4. Push the Emergency Motor Stop button to
stop the motor during emergency.

Calibration Host

Calibration Output Calibration Status

Paosition Sensor Offset
[Per-unit position]

MNote:

If motor is not rotating in corect direction, tumn off the power supply to the target, interchange

any two motor phase connections, and simulate the host model again. If motor is not retating,
check hardware setup.

Communication Port

Emergency Motor Slop
No port Push for emergency stop
selected |
Host Serial Setup
Pasition_PU > [j
Serial Communication Scope

Copyright 2020-2021 The MathWorks, Inc.

4-73

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

You can use the Scope in the host model to monitor the rotor position and offset values.

7. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

8. Click Run on the Simulation tab to run the host model. The motor runs and calibration begins
when you start simulation. After the calibration process is complete, simulation ends and the motor
stops automatically.

9. See the Calibration Status section to know the status of the calibration process:

* The Calibration in progress LED turns orange when the motor starts running. Notice the rotor
position and the variation in the offset value in the Scope (the position signal indicates a ramp
signal with an amplitude between 0 and 1). After the calibration process is complete, the LED
turns grey.

* The Calibration complete LED turns green when the calibration process is complete. Then the
Calibration Output field displays the computed offset value.

* The Incorrect motor direction LED turns red if the motor runs in the opposite direction. Then
the Calibration Qutput field displays the value "NaN." Turn off the DC power supply (24V)
and reverse the motor phase connections from ABC to CBA. Repeat steps 5 to 8 and check if the
Calibration complete LED is green. Verify that the Calibration Output field displays the offset
value.

Note: To immediately stop the motor, click the Emergency Motor Stop button.

This example does not support simulation. The example automatically saves the computed offset
value in the PositionOffset variable available in the base workspace.

For examples that implement FOC using a Hall sensor, update the computed offset in the
pmsm.Position0ffset parameter in the model initialization script linked to the example. For
instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

4-74

Monitor Resolver Using Serial Communication

Monitor Resolver Using Serial Communication

This example operates the resolver sensor to measure the rotor position. The resolver consists of two
orthogonally placed stator windings placed around the resolver rotor winding. After you mount the
resolver sensor over a PMSM, the resolver rotor winding rotates along with the shaft of the running
motor. The controller provides a fixed frequency alternating excitation signal to the resolver rotor
winding. When the resolver rotor rotates, the resolver stator windings produce output (secondary
sine and cosine) signals that are modulated with the sine and cosine of the shaft angle or position.
After receiving the secondary signals, the controller samples and normalizes them.

Shaft/ rotor position

N
“

Secondary /
cosine signal /

Primary

| excitation signal
Secondary
sine signal

4-75

4-76

4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Primary Excitation Signal
\" “I l \I'| / \ l III f |\'l l \', 'I(I'l l \'u
0.5 /Z I'|I ||,(I',I / III 'II II| / I', I f / I

ANawa II| | II'| |Ifl II'I |'I I', / \Ill'u'l l'/\lllllI /f\llllll llll/\lll'lII / \Illll l/\ll'.'ll /hl'u'ul llf/\”.'ul I[\II'II | If'lf \'I, .'rr\ll',
0 III |(I'|I |||I IlI |||I '|I }I |'|I / |'I I/ I|I I|' |'| I,' | / |II / III / L [1
0.5 L | |

| [| | I|| |II —
, / || | \ I|| |II || || |II I|| IIII I|||II ||II } ||III / II||I III(|'III I||||I 'IIII I||I I'III I’l IIIII
1 \/ \/ ! I"J II"J ! II'U/ II"J| II'J II"\/ ! II"J/ II\/'/ ! III'\/ II"\/J ! II'\;“I II"\/JI| IIUI II'-/ ! Illkilil II'\/ ! II/I Ill'j
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Secondary sine signal
! | | T T
0.5 \'. f 'I,II /\ ll'.ll Ilu'{ ".I ﬁ ".II /\'.
UJ_/\ \ / IIII" f I'.. ANEEA "
\ | \/

|/
v

|\ | {\”'.II /\"'.I /l f I'

/\
| \ Il. J|I II'. |'|II II'\ /\/ ™
I'u | I \ | | \/ \
I'. II| |II II'.J
\/ Y Vo L
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Sampled and normalized secondary sine signal
7 T { 7 T T Ill 1 I II [I
| | | |
0z . X / | Illllll II|I IIII I|I ’ I|I {1
\ \ | |
o & \ ' ' \ \ '
o= \ | / | / / -
I\. I'. | \ f \ ’
02 | | \ | \ /| | /i I'. li | =
0 1 2 3 4 5 &

0.002

0.004 0.006 0.008 0.01 0.012

0.014 0.016

0.018
Sampled and normalized secondary cosine signal

Models
The example includes the model mch resolver £28069m.

You can use this model only for code generation. You can also use the open_system command to open
the Simulink® model. For example, use this command for a F28069M based controller:
open_system('mcb resolver f28069m.slx');

Monitor Resolver Using Serial Communication

Rotor position measurement using Resolver

Note: This example requires a Tl F28069m Launchpad
Connected to C2000 resolver to digital conversion Kit

Explore More: .
Learn more about this example (TMDSRSLVR) with Resolver

Caax

1RGN 4"7

Interrupt

Global variables

HW Driver Blocks
C2B02/ 035/ 0506
duty cycle_table
AlB1] r A -
! Tung o]) Tuncion])
ADC Duty cycle table
C2B02x/ 03/ D5 06X
DMA Channel 2 Intermupt (50us) DMA Channel 1 Interrupt {100us) ADNG_resR_array
PWM2
= ADC result array

Copyright 2020 The MathWorks, Inc.

Required MathWorks® Products
For the model: mcb_resolver f28069m

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™

Prerequisite

We provide default inverter parameters with the target model. If you want to change the default
values, you can update the inverter parameters in the model initialization script associated with the
Simulink® model. For instructions, see “Estimate Control Gains and Use Utility Functions” on page
3-2.

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The controller in the target
model uses the Resolver Decoder block to process the sampled and normalized secondary sine and
cosine signals to obtain the shaft (or motor) position. The host model uses serial communication to
command the target model and obtain the computed shaft angle from the controller. You can observe
the computed shaft position in the Time Scope block of the host model.

4-77

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-78

Required Hardware

The example supports this hardware configuration. You can also use the target model name to open
the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter: mcb resolver f28069m

For connections related to the preceding hardware configuration, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware

1. Complete the hardware connections and open the target model mcb_resolver f28069m.

2. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

3. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
4. Click the host model hyperlink in the target model to open the associated host model. You can

also use the open_system command to open the host model. For example, use this command for the
F28069M based controller:

open_system('mcb resolver host read.slx');

Resolver Host

Steps:

1. Select the port in Host Serial Setup and
No port Host Serial Receive

salactad 2. Observe the resclver position in scope

Host Serial Setup

Y

Mo port Data ol & i > cofver C]

selected [EAN]
unBuf

Host Serial Recaive

= sorial_received _data

Copyright 2020-2021 The MathWorks, Inc.

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

5. In the Serial Receive and Serial Configuration block masks of the host model, select a
Communication port value.

Monitor Resolver Using Serial Communication

6. If you want to change the default baud rate (in the host and target models), use the Serial
Configuration block mask in the models to select a different Baud rate value.

7. Click Run on the Simulation tab to run the host model.
8. Open the Time Scope block in the host model.

9. Rotate the resolver shaft and observe the computed shaft position signal in the Time Scope block.

4-79

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Quadrature Encoder Offset Calibration for PMSM Motor

This example calculates the offset between the d-axis of the rotor and encoder index pulse position as
detected by the quadrature encoder sensor. The control algorithm (available in the field-oriented
control and parameter estimation examples) uses this offset value to compute an accurate and
precise position of the d-axis of rotor. The controller needs this position to implement the field-
oriented control (FOC) correctly in the rotor flux reference frame (d-q reference frame), and
therefore, run the permanent magnet synchronous motor (PMSM) correctly.

Models

The example includes these models:

*+ mcbh pmsm gep offset £28069m

* mcb pmsm gep offset f28069mLaunchPad
* mcb pmsm gep offset f28379d

You can use these models only for code generation. You can also use the open_system command to
open the Simulink® models. For example, use this command for a F28069M based controller:

open_system('mcb pmsm gep offset f28069m.slx');

Offset Computation for QEP

Steps:
1. Enter parameters in the Configuration panel. Note: This example requires a Tl F28069m controller card mounted on
2. Click Build, Deploy & Start in the Hardware tab. DRV8312 inverter connected to a PMSM Motor with QEP Sensor

3. Perform calibration by using host model.

4. If the motor does not start or rotate smoothly, increase
Vd Ref in Per Unit voltage (that can have a maximum
value of 1) in the Configuration panel.

5. If the current drawn by the connected motor is too high,
reduce the value mentioned in step 4.

6. Learn more about this example. C28x
Configuration IRGN 417
Number of Pole Pairs: 4 Interrupt
QEP Slits r y
1250 SCI_Rx_INT() Trigger()
PWM Frequency [Hz] 20000
Data type for control | inale . Hearlbeat LED Serial Receive Offset Calculation
algeorithm = *;; g
I variabl
Vd Ref in Per Unit 0.15 Global variable

Copyright 2020-2021 The MathWorks, Inc.

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products

To generate code and deploy model:

4-80

Quadrature Encoder Offset Calibration for PMSM Motor

1. For the models: mcb_pmsm_gep_offset_f28069m and
mcb_pmsm_gep_offset_f28069mLaunchPad

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
» Fixed-Point Designer™

2. For the model: mcb_pmsm_gep_offset_f28379d

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
+ Fixed-Point Designer™ (only needed for optimized code generation)

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the motor by using open-loop control.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board.

The host model uses serial communication to command the target model and run the motor in an
open-loop configuration. You can use the host model to control the motor rotations and validate the
direction of rotation of motor. The Incorrect motor direction LED in the host model turns red to
indicate that the motor is running in the opposite direction. When the LED turns red, you must
reverse the motor phase connections (from ABC to CBA) to change the direction of rotation. The host
model displays the calculated offset value.

Required Hardware

This example supports these hardware configurations. You can also use the target model name to
open the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* F28069M controller card + DRV8312-69M-KIT inverter: mcb pmsm qep offset 28069m

For connections related to the preceding hardware configuration, see “F28069 control card
configuration” on page 7-2.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb pmsm _gep offset £28069mLaunchPad

+ LAUNCHXL-F28379D controller + (BOOSTXL-3PHGANINV or BOOSTXL-DRV8305) inverter:
mcb pmsm _gep offset £28379d

To configure the model mcb_pmsm_gep_offset_f28379d, set the Inverter Enable Logic field (in
the Configuration panel of target model) to:

* Active High: To use the model with BOOSTXL-DRV8305 inverter.
* Active Low: To use the model with BOOSTXL-3PHGANINV inverter.

NOTE: When using BOOSTXL-3PHGANINV inverter, ensure that proper insulation is available
between bottom layer of BOOSTXL-3PHGANINV and the LAUNCHXL board.

4-81

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-82

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Complete the hardware connections.

2. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

3. Update the motor parameters in the Configuration panel of the target model.

* Number of Pole Pairs

* QEP Slits

* PWM Frequency [Hz]

» Data type for control algorithm

* Vd Ref in Per Unit voltage

4. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the

CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

5. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

6. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model. For example, use this command for a
F28069M based controller:

open_system('mcb pmsm host offsetComputation f28069m.slx');

Quadrature Encoder Offset Calibration for PMSM Motor

PMSM Position Sensor (Hall / QEP) Offset

Prerequisites:
1. Deploy the target model to the hardware

mcbh_pmsm_hall offset 1280689m

mch pmsm_gep offset F28069m

mcbh _pmsm_gep offset f28068mLaunchPad
2.¥ou should see and verify the variables from

the target model in the base workspace.

Steps:

1. Select port in Host Serial Setup,
Host Serial Raceive and
Host Serial Transmit

2. Simulate this model to start calibration.
Motor starts running when calibration begins

3. After calibration completes, simulation ends
and motor stops automatically.

4. Push the Emergency Motor Stop button to
stop the motor during emergency.

Calibration Host

Calibration Output Calibration Status

Paosition Sensor Offset
[Per-unit position]

Mote:

If motor is not rotating in corect direction, tumn off the power supply to the target, interchange
any two motor phase connections, and simulate the host model again. If motor is not retating,
check hardware setup.

Communication Port

Emergency Motor Elop
No port Push for emergency stop
selected |
Host Serial Setup
Pasition_PU > [j
Serial Communication Scope

Copyright 2020-2021 The MathWorks, Inc.

For details about the serial communication between the host and target models, see “Host-Target

Communication” on page 6-2.

You can use the Scope in the host model to monitor the rotor position and offset values.

7. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial

Transmit, and select a Port.

8. Click Run on the Simulation tab to run the host model. The motor runs and calibration begins
when you start simulation. After the calibration process is complete, simulation ends and the motor

stops automatically.

9. See the Calibration Status section to know the status of the calibration process:

* The Calibration in progress LED turns orange when the motor starts running. Notice the rotor
position and the variation in the offset value in the Scope (the position signal indicates a ramp
signal with an amplitude between 0 and 1). After the calibration process is complete, the LED

turns grey.

* The Calibration complete LED turns green when the calibration process is complete. Then the
Calibration Output field displays the computed offset value.

4-83

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

* The Incorrect motor direction LED turns red if the motor runs in the opposite direction. Then
the Calibration Qutput field displays the value "NaN." Turn off the DC power supply (24V)
and reverse the motor phase connections from ABC to CBA. Repeat steps 5 to 8 and check if the
Calibration complete LED is green. Verify that the Calibration Output field displays the offset
value.

Note: To immediately stop the motor, click the Emergency Motor Stop button.

This example does not support simulation. The example automatically saves the computed offset
value in the PositionOffset variable available in the base workspace.

For examples that implement FOC using a quadrature encoder sensor, update the computed
quadrature encoder offset value in the pmsm.PositionOffset parameter in the model initialization
script linked to the example. For instructions, see “Estimate Control Gains and Use Utility Functions”
on page 3-2.

4-84

Model Switching Dynamics in Inverter Using Simscape Electrical

Model Switching Dynamics in Inverter Using Simscape
Electrical

This example uses field-oriented control (FOC) to control the speed of a three-phase permanent
magnet synchronous motor (PMSM). It gives you the option to use these Simscape Electrical blocks
as an alternative to the Average Value Inverter block in Motor Control Blockset™:

* Converter (Three-Phase)

¢ Ideal Semiconductor Switch

The example also gives you the option to use the PMSM block from Simscape™ Electrical™ as an
alternative to the Surface Mount PMSM block from Motor Control Blockset™. These Simscape™
Electrical™ blocks enable you to generate high-fidelity simulations.

Field-oriented control (FOC) needs a real time feedback of the rotor position. This example uses the
quadrature encoder sensor to measure the rotor position. For details about FOC, see “Field-Oriented
Control (FOC)” on page 4-3.

You can use this example to simulate the target model by using different inverters and monitor the
feedback current for each inverter. You can also generate the code and use the host model along with
the target model.

Models

The example includes the model mch ee pmsm foc.

You can use this model for both simulation and code generation. You can also use the open system
command to open the Simulink® model. For example, use this command for a F28379D based

controller:

open_system('mcb ee pmsm foc.slx');

InverterSelected:Value

Group

* Motor Contral Blockset average inv Permanent Magnet Synchronous Motor Field Oriented Control
Simscape Electrical 3 phase conve Note: This example requires a Tl F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack

Code generation

Intermupt

lectrical Modular Mullile connected to a PMSM Motor with QEP Sensor
Hardware Init

Heartbeat LED

Y -
Simulation Sy g
3] Speed_Ref PU —DIZ‘—P Idq_ref_PU Duty Cycies
lobal Variabl —|
Global Variables Desired Speed f—' idqRef_Puf——1 B Duty_Cycles Feadbacks_sim @
| Enable | ‘ EnCiosedLoop ‘ o Speed_Mess_PU (sim_fo] > Feedbacks_sim Speed_fb|
n ; Inverter and Motor - Plant Model
Serial Receive Speed Control Gument Control
| laOffset | ‘ SpeedRef ‘ P
Explore more:
1. Edit motor & inverler parameters
| IbOffset | ‘ Debug_signals ‘ 2. Simulate this model
3. Review results in Data Inspector
4. Use Offset computation model to find
out position offset.
E L= 5. Update offset in Init script to variable

'‘pmsm.PositionOffset’
6. Build, Deploy & Start
Copyright 2020 The MathWorks, Inc. 7. Control motor via host mode|
8. Leamn more about this example

4-85

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Required MathWorks® Products
To simulate model:

* Motor Control Blockset™
* Simscape™ Electrical™

To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model
This example supports simulation. Follow these steps to simulate the model.
1. Open the target model mcb_ee_pmsm_foc.

2. Select one of these options in the InverterSelected radio group in the target model to simulate an
inverter variant:

* Motor Control Blockset average inverter - Select this option to use the Average Inverter and
Surface Mount PMSM blocks.

* Simscape Electrical 3 phase converter - Select this option to use the Converter (Three-Phase)
and PMSM blocks.

* Simscape Electrical Modular Multilevel converter - Select this option to use the Ideal
Semiconductor Switch and PMSM blocks. This option simulates the Simscape Electrical modular
multilevel converter using a low voltage.

3. Select an option from the InverterSelected radio group and click Run on the Simulation tab to
simulate the target model.

4-86

Model Switching Dynamics in Inverter Using Simscape Electrical

Motor
Control
Blockset
AVErAgE
inverter

=

Simscape
Electrical
3 phase
converter

—

Simscape
Electrical
Modular
Multilevel
converter

—

4. On the target model, click Data Inspector on the Simulation tab to view results from the three
simulation runs.

This image shows the simulation results for L 1 phase current:

W labe_motor(1)

)

-y
2 e o
T e

#4053 04000 04002 04004 04008 0WOBE 04100 04102 04104 04108 04103 0410 D4IIZ O4ITd 04TI8 OIS 04120 O;i'12: D424 04120 04128 04130 Qa32

| labc_motor(1)

4

Ba083 04080 04002 04004 04096 04006 04100 04102 04104 04105 04108 04110 04112 04114 04118 04118 04120 04122 04124 04128 04128 04130 04132

m labc_motor(1)

ka4

r-dapis 04090 04092 04004 04006 O0W08E 04100 04102 04104 04108 04108 O4TMO 0412 04N O4MS O4nME 04120 04122 04124 04129 04128 04130 04132

These images show the comparison of rotor speed, 1 i current, | ab phase current, and rotor position
for the three inverter types:

4-87

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

IMotor
Caontrol
Blockset
BVErAZE
inverter

—

Simscape
Electrical
3 phase
converter

=

Simscape
Electrical
Modular
Multilevel
converter

—

4-88

u Speed_fb mig_fb
h e
! P 0.3
0.8 Jl I
/A — a — '
|
{ -0.3
-0.5 1
e o1 02 03 0.4 0.8 ll-' 08 a7 00] 02 03 04 L 08 07|
W Speed fb mig fb
10
[\v T 1 0.3
05 j[~
o/ : of S | Mo
s i F-0.3
\ }{'\ P
-+ ot 02 03 o4 o5 IL 08 oo ot 02 03 0% o8 s o7
W Speed_fb H g _fb
1.0
I-{\'ﬁﬁ/— N\ L o3
0.5 j, L
T S Lol —
L-03
08 1
! J{--'\/———
-4 o 02 03 04 o5 IL‘ 0.8 o7 e o 02 03 o0& 0.5 0.6 07|

Model Switching Dynamics in Inverter Using Simscape Electrical

Motar
Control
Blockset

AVErage
inverter

—

Simscape
Electrical
3 phasze

convertsr

—

Simscape
Electrical
Modular
Multilevel
converter

—-—)

u lab_fb_PU(1)
0.2
0
02
0.33 034 035 0.38 037 0.38 030 .34 023s 038 037 038 0.30
m lab_fb_PU(1)
02
g
02
033 034 035 038 037 038 1] .34 0.38 L1 037 L1 038
H lab_fo_PU(1)
0z
o
02
0.33 0.34 035 0.36 0.87 0.38 oEe .34 0.35 038 .37 0.38

These images show the comparison of PWM modulation waveforms for the three inverter types:

4-89

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Motor
Control
Blockset
average
inverter

—

Simscape
Electrical
3 phase

converter

—

Simscape
Electrical
Modular

Multilevel

converter

—)

4-90

B PYWM_Duty_Cycles(1)

o2
- S - o T,
L Iﬂ:g L]
L o3 £
L ?
. - o - e -~ —
0.278 0.279 0.280 0.281 0282 0.283 0.284 0.285 0,268
i i i i i i i i i
= PWM_Duty_Cycles(1)
oo
Lo.a
L o3
0278 a.re 0.280 0231 0282) 253 0.284 0.285 0.258
= PWM_Duty_Cycles(1)
Loe
L 0.6
Lb.a
D278 aZre 0.280 0.281 0282 0 283 0.284 0.285 0.288

Model Switching Dynamics in Inverter Using Simscape Electrical

B Space Vector Generator:1

W Space Vecior Generator:2

Space Vector Generafor 3

1
Motor
Control
Blockset
awerage
inverter L

—

--""‘xr -l

0.250

0.240

0.251 0.252

0.254

W Space Vector Generator:1

B Space Vector Generator:2

Space Vector Generator:3

Simscape
Electrical
3 phase
converter

—

Jimscape
Electrical
Modular
Multilevel
converter

—

1
-0

0.248

0247

o
e

0248

e,

0248

o T —

-

Lo

0.250

0.251

0.252

e

o

0.253

R

-

0.254

W Space Vector Generator:1

W Space Vector Generator:2

Space Vector Generator:3

1

Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

The example supports this hardware configuration. You can also use the target model name to open
the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb ee pmsm foc

4-91

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-92

For connections related to the preceding hardware configuration, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions, see “Quadrature Encoder Offset Calibration for
PMSM Motor” on page 4-80.

5. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

6. To ensure that CPU2 is not mistakenly configured to use the board peripherals intended for CPU1,
load a sample program to CPU2 of LAUNCHXL-F28379D, for example, a program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx).

7. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model. For example, use this command for a
F28379D based controller:

open_system('mcb _pmsm foc host model f28379d.slx');

Model Switching Dynamics in Inverter Using Simscape Electrical

PMSM Control Host

Debug signals

Mote:

1. Select port in Host Sedal Setup, Host Serial Receive and Speed [‘ef & Speed f
Nao port Host Serial Transmit - —_
salacted 2. Use ‘Motor Start / Stop' switch to control motor.

3. Input speed request using "Reference Speed' block Id ref & |d feedback

4, Observe the debug signals in scope.
5. Start the moter in open loop under no lead condition and
transition to close loop for Sensorless Example. The model |q ref & |q feedback

works in open loop for speed ref below 0.1pu.

Host Serial Setup

Off

2000 Debugt (5] units) SelectedSignals
o e I
n

Reference Speed (RPM) e R
Start / Stop Motor

Copyright 2020-2021 The MathWorks,

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

9. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

10. Update the Reference Speed value in the host model.
11. Click Run on the Simulation tab to run the host model.
12. Change the position of the Start / Stop Motor switch to On, to start running the motor.

13. Observe the debug signals from the RX subsystem, in the Time Scope and Display blocks of the
host model.

Note: In the host model, you can also select the debug signals that you want to monitor.
Other Things to Try

You can also use SoC Blockset™ to implement a closed-loop motor control application that addresses
challenges related to ADC-PWM synchronization, controller response, and studying different PWM

4-93

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

settings. You can use Simscape™ Electrical™ to implement high fidelity inverter simulation. For
details, see “Integrate MCU Scheduling and Peripherals in Motor Control Application” on page 4-134.

4-94

Control PMSM Loaded with Dual Motor (Dyno)

Control PMSM Loaded with Dual Motor (Dyno)

This example uses field-oriented control (FOC) to control two three-phase permanent magnet
synchronous motors (PMSM) coupled in a dyno setup. Motor 1 runs in the closed-loop speed control
mode. Motor 2 runs in the torque control mode and loads Motor 1 because they are mechanically
coupled. You can use this example to test a motor in different load conditions.

The example simulates two motors that are connected back-to-back. You can use a different speed
reference for Motor 1 and a different torque reference for Motor 2 (derived from the magnitude and
electrical position of the Motor 2 reference stator current). Motor 1 runs at the reference speed for
the load conditions provided by Motor 2 (with a different torque reference).

These equations describe the computation of d-axis and g-axis components of the Motor 2 reference
stator current.

Idef = I-n‘:,a.g”'f X cost,

Iq""f I'm,u.g”'f X sinf,

where:

| d'rf.f is the d-axis component of the Motor 2 reference stator current.

re
I q is the g-axis component of the Motor 2 reference stator current.

Imag™®!

is the magnitude of the Motor 2 reference stator current.

f-f"ir' is the electrical position of the Motor 2 reference stator current.

The example runs in the controller hardware board. You can input the speed reference for Motor 1
and current reference for Motor 2 using a host model. The host model uses serial communication to
communicate with the controller hardware board.

Current control loops in Motor 1 and Motor 2 control algorithms are offset by Ts/2, where Ts is the
control-loop execution rate.

Models

The example includes the model mcb pmsm foc £28379d dyno.

You can use this model for both simulation and code generation. You can also use the open system
command to open the Simulink® model. For example, use this command for a F28379D based

controller:

open_system('mcb pmsm foc f28379d dyno.slx');

4-95

4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

PMSM Motor-Dyno
Note: This example requires a TI F28379D LaunchPad with two BOOSTXL-DRV8305 booster pack (1) initialize
or BOOSTXL-3PhGaNInv connected to a PMSM Motor-Dyno with QEP Sensors
Hardware Init

Code [|
Heartbeat LED
Simulaton SO R TNTT) E dq_ref_pu T00er()
Desired Speed Speed_Ref PU Duty Cy motort_duty sim_fb_motor! —-
ldqRat_PU| E Feedbacks_sim
Rx Desried Imag ref ! ¢
IaOffset_motort
— E Speed_Meas_PU Speed_fo molor2_duty sim_fb_molor2
Desired Imagpos b mir2_debug
IbOffset_motort Serial Recaive
" i Parse SCI Rx Speed control for motor! Current control for motor1 Motor1 and Motor2 coupled
IbOfisat_motor2 Simulation Input
[mir2_debug] Explore more:
laOffset_motor2 1200 Speedref 1. Edit motor & \nvenerrgaramgters
L 2. Use Offset computation model to find out
Motor1 speed ref in rpm position offset for both motors.
SpeedRel 3. Updale offset in Init scripl to variable
ImagRe! Data Trigger() '‘pmsm_motor1.PositionOffset’
£ g [} o pu Duty Cyclas ‘pmsm_motor2. PositionOffset
ebug_signals Motor2 Imag_rel in A - 4. Build, Deploy & Start
ey Imag_Pos_PU lgRef_PU mir?_debug [—— 5. Control motor via host model
9 imag_pos_dag o 6. Leam more about this example.
Spesd_Maas_PU mir2_speed_PU——
I dabug)
Motor2 Imag_pos_deg Signal Packing Torque control for motor2 Current control for motor2 Imr2]
EntiCi
Note:
1. Be cautious when using “Imag_pos® values other than 90 or
EnMtr2TrqCtrl 270 degrees. These values generate current along the d-axis that
creales effect. Excess current along d-axis can

4-96

create saturation/damage magnets. .
Copyright 2020 The MathWorks, Inc.

Required MathWorks® Products

To simulate model:

* Motor Control Blockset™

To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
» Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters for both Motor 1 and Motor 2. We provide default motor parameters
with the Simulink® model that you can replace with the values from either the motor datasheet or
other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset™ parameter estimation tool. For instructions,
see “Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

2. Update the motor parameters (that you obtained from the datasheet, other sources, or parameter
estimation tool) and inverter parameters in the model initialization script associated with the
Simulink® model. For instructions, see “Estimate Control Gains and Use Utility Functions” on page
3-2.

For this example, update the motor parameters for both the motors in the model initialization script.
Simulate Model

This example supports simulation. Follow these steps to simulate the model.

Control PMSM Loaded with Dual Motor (Dyno)

1. Open a model included with this example.
2, Click Run on the Simulation tab to simulate the model.
3. Click Data Inspector on the Simulation tab to view and analyze the simulation results.

4, Input a different speed reference for Motor 1 and a different current reference (load) for Motor 2.
Observe the measured speed and other logged signals in the Data Inspector.

Generate Code and Deploy Model to Target Hardware
This section instructs you to generate code and run the FOC algorithm on the target hardware.

The example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

The example supports this hardware configuration. You can also use the target model name to open
the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* LAUNCHXL-F28379D controller + 2 BOOSTXL-DRV8305 inverters: mcb pmsm foc £28379d_dyno

« LAUNCHXL-F28379D controller + 2 BOOSTXL-3PHGANINYV inverters:
mcb pmsm foc £28379d dyno

For connections related to the preceding hardware configuration, see “Instructions for Dyno (Dual
Motor) Setup” on page 7-9.

Generate Code and Run Model on Target Hardware

1. Simulate the target model and observe the simulation results.

2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions, see “Quadrature Encoder Offset Calibration for

PMSM Motor” on page 4-80.

For this example, update the QEP offset values in the pmsm_motorl.PositionOffset and
pmsm_motor2.PositionOffset variables in initialization script.

5. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

4-97

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

6. To ensure that CPU2 is not mistakenly configured to use the board peripherals intended for CPU1,
load a sample program to CPU2 of LAUNCHXL-F28379D, for example, a program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx).

7. Click Build, Deploy & Start on the Hardware tab to deploy the model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model:

open_system('mcb _pmsm foc host model dyno.slx');

PMSM Dyno Control Host

MNote:

1. Select the port in Host Serial Setup, Host Serial Receive and Debug signals
Host Serial Transmit
2. Use "Motor Start [Stop” switch to control motor, .
3. Input speed request for Mator 1 using "Motor 1 Reference Speed’ knob. Mtr1: S p‘EEd ref & SPEEd

4. Input Iq ref for Motor 2 using "Motor 2 - IgRef (PU}' Knob

 Obsernvethe debug signals i scope. Mtr1: Id ref & Id feedback
Mtr1: Iq ref & Iq feedback
1 Mtr1: Vd & Vq
Motor 2 - Imag Ref (A) Mitr1: la & |b feedback
Mtr1: Pm & Te
1200 o0 Mtr2: Id ref & Id feedback
Mtr2: Iq ref & Iq feedback
Motor 1 - Reference Speed (RPM) Motor 2 - Imag Pos (deg) Mtr?: Vd & "Jq
Mtr2: la & Ib feedback
Mtrz: Pm & Te
Off
| Scope (Per-Linit) D
Debug! (S units) > :l SelectedSignals
Mo port J
selected : Debug2 (S units) > :l
Host Seral Setup ™ 0 n Ri

Start / Stop Motor 1

Copyright 2020 The MathWorks, Inc.

9. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

4-98

Control PMSM Loaded with Dual Motor (Dyno)

10. Click Run on the Simulation tab to run the host model.
11. Change the position of the Start / Stop Motor 1 switch to On, to start running the motor.

12. Update the Motor 1 - Reference Speed (RPM), Motor 2 - Imag Ref (A), and Motor 2 - Imag
Pos (deg) in the host model.

Note: Be cautious when using values other than 90 or 270 degrees in the Motor 2 - Imag Pos (deg)
field. These values generate current along the d-axis that creates a magnetizing effect. Excess
current along the d-axis can create saturation and can damage the motor magnets.

13. Select the debug signals that you want to monitor, to observe them in the Time Scope block of
host model.

Other Things to Try

You can also use SoC Blockset™ to develop a real-time motor control application for a dual motor
setup that utilizes multiple processor cores to obtain design modularity, improved controller
performance, and other design goals. For details, see “Partition Motor Control for Multiprocessor
MCUs” on page 4-143.

4-99

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Field-Oriented Control of Induction Motor Using Speed Sensor

4-100

This example implements the field-oriented control (FOC) technique to control the speed of a three-
phase AC induction motor (ACIM). The FOC algorithm requires rotor speed feedback, which is
obtained in this example by using a quadrature encoder sensor. For details about FOC, see “Field-
Oriented Control (FOC)” on page 4-3.

This example uses the quadrature encoder sensor to measure the rotor speed. The quadrature
encoder sensor consists of a disk with two tracks or channels that are coded 90 electrical degrees out
of phase. This creates two pulses (A and B) that have a phase difference of 90 degrees and an index
pulse (I). Therefore, the controller uses the phase relationship between A and B channels and the
transition of channel states to determine the direction of rotation of the motor.

Model

The example includes the model mcb acim foc gep f28379d.

You can use this model for simulation and code generation. You can also use the open system
command to open the Simulink® model.

open_system('mcb acim foc gep f28379d.slx');

Field-Oriented Control of Induction Motor Using Speed Sensor

Field-Oriented Control of AC Induction Motor

Note: This example requires a Tl F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack
connected to an Induction Motor with QEP Sensor

| () initialize l
m Hardware Init
Code generation
ADC_Intarrupt | I
SCI_Rx_INT
Simulation SCI_Rx_INT() ADC Intarrupt(y
r bl:r_tl- #{idq_ref Duty_Cycles
Global Variables
—] Speed_fo [— RT1 RT3 Lyl puty Cycles Feedbacks_sim
>|:r_t|- #| Feedvacks_sim Speed_fb
Enable_fwe RT2 RT4
Serial Receive Speed Control Current Control Inverter and Motor
Debug_signals
1. Edit motor & inverter parameters
2. Simulate this model
3. Review results in Data Inspector
Note: 4. Generate code from hardware tab
1) To achieve higher speeds, increase the "Max current” value in with "Build, Deploy & Start"
"Speed Control | ACIM Control Reference” block (e.g. set 1o 2xirated) 5. Control mdlor via host model
2) Itis recommended to monitor motar's temperature for operation Copyright 2020-2021 The MathWarks, Inc. 6L bout this exampl
above base speed, while working with hardware. - Learn more about this example.

For details on the supported hardware configuration, see the Required Hardware section under
Generate Code and Deploy Model to Target Hardware.

Required MathWorks® Products
To simulate model:
* Motor Control Blockset™

To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (needed only for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide the default motor parameters with the Simulink® model
that you can replace with values from either the motor datasheet or other sources.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor and
inverter parameters in the model initialization script associated with the Simulink® models. For
instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

3. The initialization script also computes the derived parameters. For example, total leakage factor,
rated flux, rated torque, stator and rotor inductances of the induction motor.

Simulate Model
This example supports simulation. Follow these steps to simulate the model.

1. Open the model included with this example.

4-101

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-102

2. Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector on the Simulation tab to view and analyze the simulation results.

Generate Code and Deploy Model to Target Hardware

This section instructs you on how to generate code and run the FOC algorithm on the target
hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in closed-loop control.

Required Hardware

This example supports the following hardware configuration. You can also use the target model name
to open the model for the corresponding hardware configuration from the MATLAB® command
prompt.

* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb acim foc gep £28379d

For connections related to the preceding hardware configuration, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware

1. Simulate the target model and observe the simulation results.

2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverterADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update them manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and

Calibrate ADC Offset” on page 4-10.

4. Open the target model. If you want to change the default hardware configuration settings in the
model, see “Model Configuration Parameters” on page 2-2.

5. Load a sample program to CPU2 of the LAUNCHXL-F28379D, for example program that operates

the CPU2 blue LED, by using the GPIO31 pin (¢28379D cpu2_blink.slx), to ensure that CPU2 is not
mistakenly configured to use the board peripherals intended for CPU1.

6. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

7. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model.

open_system('mcb acim foc host model.slx');

Field-Oriented Control of Induction Motor Using Speed Sensor

Prerequisites:

1. Deploy the target model to the hardware
mcb_acim foc gep f28379d
meh_acim _foc sensorless 283794

2 Merify the variables from the target model in
the base workspace.,

Steps:

1. Sel DC power supply to inverter.V_dc (volts) |

2. Select the port in Host Serial Selup,
Host Serial Receive and Host Serial Transmit.

3. Simulate this model

4. Use Start | Stop Motor switch to control the
molor.

5. Enter Reference Speed in RPM using the
edit box

6. Observe the selected Debug signal in the

AC Induction Motor

Reference Speed (RPM)

Stop Start

Mator

Mo port
selecled

Host Serial Setup

Field Oriented Control Host

1000 Debug signals
» Speed_ref & Speed_fe
Stop Start Id_ref & Id_feedback

Field Weakening Control

Iqg_ref & |Iq feedback

Scope (Per-Unil) - D

Dabug (S units)

ﬂ

Scope

,.(

Debuga (S| units)

Serial Communication

Copyright 2020-2021 The MathWarks, Inc.

For details about the serial communication between the host and target models, see “Host-Target

Communication” on page 6-2.

8. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial

Transmit, and select a Port.

9. Update the Reference Speed value in the host model.

10. In the Debug signals section, select a signal that you want to monitor.

11. Click Run on the Simulation tab to run the host model.

12. Change the position of the Start / Stop Motor switch to On to start running the motor.

13. Observe the debug signals from the RX subsystem in the SelectedSignals time scope of the host

model.

NOTE: This example depends on the positive speed feedback for the positive rotation of the space
vectors. If the motor does not run, try these steps to resolve the issue:

* Try interchanging any two motor phase connections.

* Modify and use the example “Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC
Offset” on page 4-10 with a speed feedback and confirm the positive direction of rotation for a

positive reference speed.

See Also

* Field-Oriented Control of Induction Motors with Simulink and Motor Control Blockset

4-103

https://www.mathworks.com/videos/field-oriented-control-of-induction-motors-with-simulink-and-motor-control-blockset-1605686192833.html

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Sensorless Field-Oriented Control of Induction Motor

Simulation

Global Variables

This example uses sensorless position estimation to implement the field-oriented control (FOC)
technique to control the speed of a three-phase AC induction motor (ACIM). For details about FOC,
see “Field-Oriented Control (FOC)” on page 4-3.

This example uses rotor Flux Observer block to estimate the position of rotor flux.

The block uses stator voltages (Hl ’ Vf) and currents (I 23 I -f)
flux, generated torque, and the rotor flux position.

as inputs and estimates the rotor

To ensure that the detected position is accurate, add the inverter board resistance value to the stator
phase resistance parameter of the motor block and the stator resistance parameter of the Flux
Observer block.

The sensorless observers and algorithms have known limitations regarding motor operations beyond
the base speed. We recommend that you use the sensorless examples for operations upto base speed
only.

NOTE: The speed estimated by the Flux Observer block has an error against the actual rotor speed.
This error is within tolerance of one percent of the base speed. You can introduce an offset
compensation to the position output of the Flux Observer block to minimize this error.

Model
The example includes the model mch acim foc sensorless £28379d.

You can use this model for both simulation and code generation. You can also use the open system
command to open the Simulink® model.

open_system('mcb _acim foc sensorless f28379d.slx');

Field-Oriented Control of AC Induction Motor

Note: This example requires a TI F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack | o initialize l

connected to an Induction Motor

| Enable

| Enable_fwe

| Speed_rel

| Debug_signals

Hardware Init
ADC_Interrupt | |
SCI_Ri_INT
Heartbeat LED
SCI_Rx_INT() ADC Interrupt{)
RT1 RT3
—] speed o \dq_ref}— L] Duty_Cycles Feedbacks_sim
Feedbacks_sim Speed_fb
RTZ RT4
Serial Receive Speed Control Current Control Inverter and Motor
| ‘ laOffset |
| [Tworset_ |
Explore more:
| ‘ EnClosedLoop | 1. Eqit molor & inverter parameters
2. Simulate this model
| ‘ Sin._spoed | 3. Review results in Data Inspector

4. Generate code from hardware tab

Note: with "Build, Deploy & Start”
1) To achieve higher speeds, increase the “Max current” value in 5. Control motor via host model
"Speed Control | ACIM Control Reference” block (e.g. set to 2xirated), 6. Start the motor in open loop and transition fo closed loop.

2) Itis recommended to monitor motor's temperature for operation

The model works in open loop for speed ref below 0.2pu.

above base speed, while working with hardware Copyright 2020-2021 The MathWaorks, Inc. 7. Learn more about this example.

4-104

For details on the supported hardware configuration, see the Required Hardware section under
Generate Code and Deploy Model to Target Hardware.

Sensorless Field-Oriented Control of Induction Motor

Required MathWorks® Products

To simulate model:

* Motor Control Blockset™

To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (needed only for optimized code generation)

Prerequisites

1. Obtain the motor parameters. We provide the default motor parameters with the Simulink® model
that you can replace with the values from either the motor datasheet or other sources.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor and
inverter parameters in the model initialization script associated with the Simulink® models. For
instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

3. The initialization script also computes the derived parameters. For example, total leakage factor,
rated flux, rated torque, stator and rotor inductances of the induction motor.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open the model included with this example.

2. Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector on the Simulation tab to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section instructs you on how to generate code and run the FOC algorithm on the target
hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in closed-loop control.

Required Hardware

The example supports this hardware configuration. You can also use the target model name to open
the model for the corresponding hardware configuration from the MATLAB® command prompt.

* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb acim foc gep f28379d

For connections related to this hardware configuration, see “LAUNCHXL-F28069M and LAUNCHXL-
F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware

4-105

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the Analog-to-Digital Converter (ADC) or current offset values.
To disable this functionality (enabled by default), update the value 0 to the variable
inverter ADCOffsetCalibEnable in the model initialization script.

Alternatively, you can compute the ADC offset values and update them manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Open the target model. If you want to change the default hardware configuration settings in the
model, see “Model Configuration Parameters” on page 2-2.

5. Load a sample program to CPU2 of the LAUNCHXL-F28379D, for example program that operates
the CPU2 blue LED, using the GPIO31 pin (c28379D cpuZ2 blink.slx), to ensure that CPU2 is not
mistakenly configured to use the board peripherals intended for CPU1.

6. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

7. In the target model, click the host model hyperlink to open the associated host model. You can
also use the open_system command to open the host model.

open_system('mcb _acim foc host model.slx');

AC Induction Motor
Field Oriented Control Host

Prerequisites: 1000 Deb ug SIQ nals

1. Deploy the target model to the hardware

mch_acim foc gep f28379d Ref Spead (RPM)

meb_acim_foc sensorless 28379d elhrence peed! 2 Speed_l‘ef & SpE‘Ed_ff
2 Verify the variables from the target model in Stop Start Stop Start |d ref & |l:| feedback

the base workspace.

Steps:

Mator Field Weakening Control

Iqg_ref & Iq feedback

1. Sel DC power supply to inverter.V_dc (volts) |

2. Select the port in Host Serial Setup,

Host Serial Receive and Host Serial Transmit. [:

3. Simulate this model Scape (Per-Unit)

4. Use Start / Stop Motor swilch to control the
molor.

5. Enter Reference Speed in RPM using the
edit box - Debug? (SI units)

6. Observe the selected Debug signal in the Host Serial Setup

4-106

h 4

M rl
se-‘l:letpzl'ied Dabug (S units)

h

I —
L |

Serial Communication

Copyright 2020-2021 The MathWorks, Inc.

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

8. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

Sensorless Field-Oriented Control of Induction Motor

9. Update the Reference Speed value in the host model.
10. In the Debug signals section, select a signal that you want to monitor.
11. Click Run on the Simulation tab to run the host model.

12. Change the position of the Start / Stop Motor switch to On, to start running the motor in the
open-loop condition (by default, the motor spins at 10% of the base speed).

Note: Do not run the motor (using this example) in the open-loop condition for long. The motor may
draw high currents and produce excessive heat.

We designed the open-loop control to run the motor with a Reference Speed that is less than or equal
to 10% of base speed.

13. Increase the motor Reference Speed beyond 10% of the base speed to switch from open-loop to
closed-loop control.

NOTE: To change the motor's direction of rotation, reduce the motor Reference Speed to a value less
than 10% of the base speed. This brings the motor back to the open-loop condition. Change the
direction of rotation, but keep the Reference Speed magnitude constant. Then transition to the
closed-loop condition.

14. Observe the debug signals from the RX subsystem in the SelectedSignals time scope of the host
model.

4-107

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Tune Pl Controllers Using Field Oriented Control Autotuner
Block on Real-Time Systems

Note:

This example computes the gain values of proportional-integral (PI) controllers within the speed and
current controllers by using the Field Oriented Control Autotuner block. For details about field-
oriented control, see “Field-Oriented Control (FOC)” on page 4-3.

This model supports both simulation and code generation. When you run the model, it uses the simple
values of gains for the PI controllers to achieve the steady state of the speed-control operation.

The model begins tuning only in the steady state. It introduces disturbances in the controller output
depending on the controller goals (bandwidth and phase margin). The model uses the system
response to disturbances to calculate the optimal controller gain.

Model
The example includes the model mcb pmsm foc autotuner speedgoat.

You can use this model for both simulation and code generation. You can use the open system
command to open the Simulink® model.

open_system('mcb pmsm foc autotuner speedgoat.slx');

Tuning Pl controllers for current and speed using FOC Autotuner on Real-Time Target

Note: This example requires Speedgoat Baseline Real-Time Target machine with 10-397 and Electric motor control kit

1. Update parameters in Init script.
2. Simulate the model to see speed response.

3. Build the model, load and run the application on hardware. |

Refer documentation for instructions to run model.
4. Open Data Inspector to see logged signals (including Pl Controler Inputs > 1 Controller Inputs.

parameters). Irvener Enable ' Pos b —b@
5. Update the Pl parameters in Init script, FOC Autotuner can be

disabled using Radio button selection below for consecu System Inputs

runs. [FE>—»{ aoc > Pos_fo DAC » inverter Inputs

PWM Duty Cyclas ' lab iy
Operating Mode —
FOC Autotuner |
Open Loop Speed Contro Control Algorithms e
Disable
= Closed Loop Speed Conti

« Fnahle

4-108

Current Offset Calibration

Copyright 2020 The MathWorks, Inc.

For details on the supported hardware configuration, see the Required Hardware section under
Generate Code and Deploy Model to Target Hardware.

Required MathWorks® Products

* Motor Control Blockset™
* Simulink Control Design™
¢ Simulink Real-Time™

Tune PI Controllers Using Field Oriented Control Autotuner Block on Real-Time Systems

* Speedgoat I/O Blockset
Prerequisites

1. The motor parameters available in the example model are for the motor that comes with the
Speedgoat Electric Motor Control Kit. You can modify these parameters for any other motor
by replacing them with values from either the motor datasheet or other sources.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor and
inverter parameters in the model initialization script associated with the Simulink® models. For
instructions, see “Model Initialization Script” on page 3-3.

Simulate Model
This example supports simulation. Follow these steps to simulate the model.
1. Open the model included with this example.

2. Check the reference speed profile configured in the signal builder (available in
mcb pmsm foc autotuner speedgoat/System Inputs/Speed Reference).

3. Check and update the FOC Autotuner parameters in the Field Oriented Control Autotuner block
mask (available in the Control Algorithms/FOC_AutoTuner subsystem). For details about the Field
Oriented Control Autotuner block, see Field Oriented Control Autotuner.

4. Check and update the simple gain values in the model initialization script associated with the
model.

5. Click Run on the Simulation tab to simulate the model.
6. Verify that the motor reaches steady state operation for at least half of the rated speed using the
simple gain values that you entered. The model begins field-oriented control (FOC) tuning (using the

Field Oriented Control Autotuner block) at the seventeenth second.

7. After tuning completes, observe the computed PI controller gain values in the Display PI Params
block available in the Control Algorithms subsystem.

8. Observe the system response with the newly computed PI parameters by using the Simulation Data
Inspector.

For more details, see “Tune PI Controllers Using Field Oriented Control Autotuner” on page 4-28.
Generate Code and Deploy Model to Target Hardware

This section instructs you on how to generate code and run the FOC algorithm on the target
hardware.

Required Hardware

This example supports Speedgoat Electric Motor Control Kit thatincludes these
components:

* Three-phase inverter rated for 48 V and 20 A from Speedgoat

* 100 W three-phase brushless DC motor from Maxon Motor

4-109

https://www.speedgoat.com/products-services/demo-kits/electric-motor-control
https://www.speedgoat.com/products-services/demo-kits/electric-motor-control

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-110

* Quadrature encoder with 4096 impulses

* 150 W 254 V DC power supply

NOTE: Contact Speedgoat for the bit stream file that is valid for your hardware.

For details about Speedgoat hardware setup, see Speedgoat Software Configuration Guide.
Generate Code and Run Model on Target Hardware

1. Simulate the model and verify that you are obtaining the desired controller response.

2. Complete the hardware connections for the Speedgoat Electric Motor Control Kit.

* Calibrate current offset

1. In the model, set Operating Mode to Current Offset Calibration.

2. In the Real-Time tab on the Simulink toolstrip, click Build Model in the Run on Target drop-
down menu to build the model.

NOTE: Do not click Run on Target because this example model does not support real-time execution
in external mode.

3. Navigate to the folder where Simulink built the model. Double click the file
mcb_pmsm_foc autotuner speedgoat.mldatx to open the Simulink Real-Time Application dialog
box.

4 Simulink Real-Time Application — >

To load the application, select a target computer:

OK Cancel

https://www.speedgoat.com/help/slrt/page/configuration/refentry_ref_config_guide

Tune PI Controllers Using Field Oriented Control Autotuner Block on Real-Time Systems

4. In the Simulink Real-Time Application dialog box, select the target computer to which you are
connected. Click OK to load the application file to the hardware.

5. Enter these commands (in the same order) at the MATLAB command prompt to execute the loaded
application on the hardware.

* tg = slrealtime;
+ tg.start;

6. After the model runs successfully, use Data Inspector on the Simulation tab to see the logged
signals. The stabilized Iab offset signals are the current offsets.

7. Update the current offset values in the inverter.CtSensAOffset and

inverter.CtSensBOffset variables available in the model initialization script associated with the
Simulink model.

4-111

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

W lab_Offset(1)

-0.020

-0.035 4

-0.080 4

-0.085

-0.10:0

-0.105

-0.110

0 2 4 5 £ 10 12 14 15 13 20 22 24 E 23 0

W lab_Offset(2)

0.045

0,010

0.005 4

-0.005

-0.010 4

-0.015

-0.020 4

R
e B e T e e e

* Run motor in open-loop control
1. In the model, set Operating Mode to Open Loop Speed Control.

2. In the Real-Time tab on the Simulink toolstrip, click Build Model in the Run on Target drop-
down menu to build the model.

3. Navigate to the folder where Simulink built the model. Double click the file
mcb_pmsm_foc autotuner speedgoat.mldatx to open the Simulink Real-Time Application dialog
box.

4. In the Simulink Real-Time Application dialog box, select the target computer to which you are
connected. Click OK to load the application file to the hardware.

4-112

Tune PI Controllers Using Field Oriented Control Autotuner Block on Real-Time Systems

0.9

0.8

0.3

S05 4

00 4

To5

780 4

o
o
=}

00 4

700 4

5. Enter these commands (in the same order) at the MATLAB command prompt to execute the loaded
application on the hardware.

* tg = slrealtime;
+ tg.start;

6. After the model executes, use Data Inspector on the Simulation tab to see the logged signals.
Verify that speed feedback (Speed fb) follows the reference speed (Speed Ref) signal.

M Pos_FU
i 1 1 1 f 1 Fl y ;
f f J
P " I I
¥] !
) i i f |
F { i/ ,'.l
/ y f
r F i /
/ 7 j , 7
£ ll‘ 'll
J i ! /
; /
i ' / [
s i l'll ||I|l f
/ i -".l / f
|" Iln' .'
r] J F
3 { ¥ ¥ ¥ X
12.94 12.95 13.08 13.07 12.08 13.80 14.00 14.01 14.02 14.03 14.04 14.05 14.08
M Speed_Ref
12.04 12.05 13.08 13.07 12.08 13.00 14.00 14.01 14.02 14.03 14.04 14.05 14.08
W Speed_fb
12.04 12.05 13.08 13.07 12.08 13.00 14.00 14.01 14.02 14.03 14.04 14.05 14.08

For example, verify that the positive reference speed has a positive speed feedback, and the position
signal (Pos_PU) has a positive ramp.

If there is a mismatch in the sign of the reference speed and speed feedback signals, change the A
leads B parameter (of the Inverter and Plant model/SpeedGoatDrivers/Condition Encoder block)

4-113

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-114

either from 0 to 1 or from 1 to 0. Then follow steps 2 to 6 in this section to execute the model again
on the hardware.

NOTE: In the Open Loop Speed Control mode, the motor speed is limited between 500 rpm and 1200
rpm.

* Run motor in closed-loop control
1. In the model, set Operating Mode to Closed Loop Speed Control.

2. Set the FOC Autotuner button on the model to Disable to disable the field-oriented control (FOC)
Autotuner.

3. In the Real-Time tab on the Simulink toolstrip, click Build Model in the Run on Target drop-
down menu to build the model.

4. Navigate to the folder where Simulink built the model. Double-click the file
mcb_pmsm_foc autotuner speedgoat.mldatx to open the Simulink Real-Time Application dialog
box.

5. In the Simulink Real-Time Application dialog box, select the target computer to which you are
connected. Click OK to load the application file to the hardware.

6. Enter these commands (in the same order) at the MATLAB command prompt to execute the loaded
application on the hardware and run the motor.

* tg = slrealtime;
» tg.start;

The motor runs in closed-loop control at a speed that is configured in the signal builder.

Tune PI Controllers Using Field Oriented Control Autotuner Block on Real-Time Systems

M Speed_fb W Speed_Ref

3000

2500

2000 4

1500 4

1000 4

500 4

-500 4

-1000 4

-1500

2000

-2500

-3000 4

45 50 55 5.0 55 7.0 75 20 25 0.0 o5 10.0 105 1.0 115 12.0 12.5

7. Verify that the motor reaches steady state operation because the FOC Autotuner will not work if
the motor speed is unstable.

If the motor fails to reach the steady state, change the PI parameters manually in the model
initialization script (associated with the model), until the motor speed stabilizes to half the base speed
of the motor.

NOTE: When tuning the PI parameters in the model initialization script, the motor may show a slow
speed response.

8. If the motor reaches a stable speed, follow the steps to run FOC Autotuner.

* Run FOC Autotuner

4-115

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-116

1. Set the FOC Autotuner button on the model to Enable to enable the field-oriented control
autotuner.

2. Verify if Operating Mode is set to Closed Loop Speed Control.

3. Check and update the FOC Autotuner parameters (such as autotuner trigger timing and controller
target) in the Field Oriented Control Autotuner block mask (available inside Control Algorithms/
FOC AutoTuner subsystem). For details about the Field Oriented Control Autotuner block, see Field
Oriented Control Autotuner.

4. In the Real-Time tab on the Simulink toolstrip, click Build Model in the Run on Target drop-
down menu to build the model.

5. Navigate to the folder where Simulink built the model. Double click the file
mcb_pmsm_foc autotuner speedgoat.mldatx to open the Simulink Real-Time Application dialog
box.

6. In the Simulink Real-Time Application dialog box, select the target computer to which you are
connected. Click OK to load the application file to the hardware.

7. Enter these commands (in the same order) at the MATLAB command prompt to execute the loaded
application on the hardware and run the motor.

* tg = slrealtime;

+ tg.start;

The model begins field-oriented control (FOC) tuning (using the Field Oriented Control Autotuner
block) at the seventeenth second after model execution begins on the hardware. It logs the PI

controller gain values (kp Id, ki Id, kp Iq, ki Iq, kp_speed, ki speed) in the Simulation Data
Inspector.

8. Observe and compare the system response with the PI parameters before tuning and after tuning
in the Simulation Data Inspector.

Tune PI Controllers Using Field Oriented Control Autotuner Block on Real-Time Systems

02

02

m Speed_fo W Speed_Ref u TET
0.00015
0.00010
L
0.00005
0
0 5 10 15 20 25 0 5 10 15 20 25 0
W Kp_ld B Ki_ld
400
200
]
0 5 10 15 20 25 0 5 10 15 20 25 0
mKp_lg mKi_lg
400
200
o
0 5 10 15 20 25 0 5 10 15 20 25 0
W Kp_Speed W Ki_Speed
200
0
0 5 10 15 20 25 0 5 10 15 20 25 20

4-117

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Q

Inspect
Filter Signals

+ Run 11: mcb_pmsm_foc_autotuner_speedg...

1d_Ref
1d_fo
lg_Ref
lg_fb

encoderCount

S
w e

Pos_PU
~ [tab_fo
lab_ib(1)
lab_fb(2)

3 Lﬂ lab_Offset

Kp_ld

Ki_ld

Kp_lg

Ki_lg

Kp_Speed

Ki_Speed
4 Speed_fb
' Speed_Ref

Archive (10)

Properties

4-118

Lo

4

Compare B Speed_fo W Speed_Ref

3000 4

2500 4

2000 {

1000 4

-500 4

-1000 4

-1500 4

-2000 4

-2500 1

-3000 4

243 248 248 252 Er 258 281 264 287 270 273 278 278 282

9. If the system response after tuning is satisfactory, update the gain values in the model initialization
script associated with the model. For consecutive model executions, you can disable the FOC tuning
using the FOC Autotuner button in the model and continue with the closed-loop testing using the new
PI parameters.

NOTE: Do not reconfigure or change the reference speed value in the signal builder such that the
reference speed changes during the tuning process.

Six-Step Commutation of BLDC Motor Using Sensor Feedback

Six-Step Commutation of BLDC Motor Using Sensor Feedback

This example uses 120-degree conduction mode to implement the six-step commutation technique to
control speed and direction of rotation of a three-phase brushless DC (BLDC) motor. The example
uses the switching sequence generated by the Six Step Commutation block to control three-phase
stator voltages, and therefore, control the rotor speed and direction. For more details about this
block, see Six Step Commutation.

The six-step commutation algorithm requires a Hall sequence or a rotor position feedback value
(which is obtained from either a quadrature encoder or a Hall sensor).

The quadrature encoder sensor consists of a disk with two tracks or channels that are coded 90
electrical degrees out of phase. This creates two pulses (A and B) that have a phase difference of 90
degrees and an index pulse (I). The controller uses the phase relationship between the A and B
channels and the transition of channel states to determine the speed, position, and direction of
rotation of the motor.

A Hall effect sensor varies its output voltage based on the strength of the applied magnetic field.
According to the standard configuration, a BLDC motor consists of three Hall sensors located
electrically 120 degrees apart. A BLDC with the standard Hall placement (where the sensors are
placed electrically 120 degrees apart) can provide six valid combinations of binary states: for
example, 001,010,011,100,101, and 110. The sensor provides the angular position of the rotor in
degrees in the multiples of 60, which the controller uses to determine the 60-degree sector where the
rotor is present.

The controller controls the motor by using the Hall sequence or the rotor position. It energizes the

next two phases of the stator winding, so that the rotor always maintains a torque angle (angle
between rotor d-axis and stator magnetic field) of 90 degrees with a deviation of 30 degrees.

Phase b Hall b
Sector 3 Sector 2 Energized Energized
/sector
" /sector
Sector 4 \600 Phase a / \ 60°

[o
| I R

I/ Sector 1 - / Hall a

Sector 6

r Y

Secto

Hall ¢
Phase c

Note: The Hall sequence can vary. Use the example “Hall Sensor Sequence Calibration of BLDC
Motor” on page 4-124 to determine the Hall sequence.

4-119

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Models

The example includes these models:
* mcb bldc sixstep f28069mLaunchPad
* mcb bldc sixstep f28379d

You can use these models for both simulation and code generation. To open a Simulink® model, you
can also use the open system command at the MATLAB command prompt. For example, use this
command for a F28379D based controller:

open_system('mcb bldc sixstep f28379d.slx');

Speed_Feedback Six Step Control of BLDC

QEP

Note: This example requires a TI F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack () initialize
connected to a BLDC Motor with Hall or QEP sensor

Hardware Init
HW_INT ardware

Code Generation

Simulation SCLRxINTY) Trigger)
[-IZI- #1 Speed_Ref_PU r -IZI-] idc_ref_PU DutyCycles
o] saar S R N
e D-iZI- #{ Speed_Maas_PLI r p-iZl- #] feadback_sim Speed_fb
laOffset Serial Receive Speed Control Current Control Inverter and Motor - Plant Model
—_— Explore more:
IbOfsst 1. Edit motor & inverler parameters
2. For position sense using QEP, use Offset
IcOfiset . computation model to find out position offset.
Copyright 2020 The MathWorks, Inc. Update offset in Init seript to variable

‘blde.PositionOffset’.

3. For position sense using HALL, use hall
sequence calibration to find out hall sequence.
Update hall sequence in Init script to variable
'blde.HallSequence’.

4. Click Build, Deploy & Start in hardware tab
5. Control motor via host model

6. Learn more about this example.

For details of the supported hardware configuration, see Required Hardware in the Generate Code
and Deploy Model to Target Hardware section.

Required MathWorks® Products

To simulate model:

* Motor Control Blockset™

* Simscape™ Electrical™

To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
+ Fixed-Point Designer™ (only needed for optimized code generation)

4-120

Six-Step Commutation of BLDC Motor Using Sensor Feedback

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink model that
you can replace with values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2, If you obtain the motor parameters from a motor datasheet or from other sources, update the
motor parameters and the inverter parameters in the model initialization script associated with the
Simulink models. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-
2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts the motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open the model included with this example.

2. Select either the QEP or the Hall Speed Feedback radio button in the model.

3. Click Run on the Simulation tab to simulate the model.

4. Click Data Inspector on the Simulation tab to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section shows you how to generate code and run the FOC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink model and run the motor in a closed-loop control.

Required Hardware

The example supports these hardware configurations. You can also use the target model name to
open the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb bldc_sixstep f28069mLaunchPad

* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb bldc sixstep £28379d

For connections related to these hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware

4-121

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-122

1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model computes the ADC (or current) offset values by default. To disable this functionality,
update the value 0 to the variable inverterADCOffsetCalibEnable in the model initialization script.

Alternatively, you can compute the ADC offset values and update them manually in the model
initialization script. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and Calibrate
ADC Offset” on page 4-10.

4. If you are using a quadrature encoder, compute the quadrature encoder index offset value and
update it in the model initialization script associated with the target model. For instructions, see
“Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-80.

5. If you are using a Hall sensor, compute the Hall sequence value and update it in the
bldc.hallsequence variable in the model initialization script associated with the target model. For
instructions, see “Hall Sensor Sequence Calibration of BLDC Motor” on page 4-124.

6. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

7. Select either the QEP or the Hall Speed Feedback radio button in the target model.

8. Load a sample program to CPU2 of LAUNCHXL-F28379D. For example, you can use the program
that operates the CPU2 blue LED by using GPIO31 (¢28379D cpu2 blink.slx), and ensure that CPU2
is not mistakenly configured to use the board peripherals intended for CPU1.

9. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

10. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model. Use this command for a F28379D based
controller.

open_system('mcb bldc host model f28379d.slx');

Six-Step Commutation of BLDC Motor Using Sensor Feedback

Mo port
salactied

Host Serial Setup

2000

Reference Speed (RPM)

BLDC Control Host

Note:

1. Select the serial port in Host Serial Setup, Host Serial Receive
and Host Serial Transmit.

2. Use 'Motor Start / Stop” switch 1o control molor.

3. Input speed request using ‘Reference Speed’ block

4. Observe the debug signals in scope.

Off

)
o

On

Start / Stop Motor

TX

Copyright 2020 The MathWorks, Inc.

Debug signals
*» Speed ref & Speed fe
ldc_ref & |dc_feedback
Position or HallState

Scopa (Per-Unit) »> D

Debugl (5] units) L

SelectedSignals

L1
L1

Debug2 (S units) L

Rx

For on the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

11. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

12. Update the reference speed value in the Reference Speed (RPM) field in the host model.

13. In the host model, select the debug signals that you want to monitor.

14. Click Run on the Simulation tab to run the host model.

15. Change the position of the Start / Stop Motor switch to On, to start running the motor.

16. Observe the debug signals from the RX subsystem, in the Scope and Display blocks in the host

model.

4-123

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Hall Sensor Sequence Calibration of BLDC Motor

4-124

This example calculates the Hall sensor sequence with respect to position zero of the rotor in open-
loop control. This workflow helps you to spin the motor using six-step commutation without the need
to label the hall sensors or derive the switching sequence. Run this example and obtain the hall
sequence, and use this hall sequence with the Six Step Commutation block to run the motor in closed
loop as explained in “Six-Step Commutation of BLDC Motor Using Sensor Feedback” on page 4-119
example.

A Hall effect sensor varies its output voltage based on the strength of the applied magnetic field.
According to the standard configuration, a brushless DC (BLDC) consists of three Hall sensors
located electrically 120 degrees apart. A BLDC motor with the standard Hall placement (where the
sensors are placed electrically 120 degrees apart) can provide six valid combinations of binary states:
for example, 001,010,011,100,101, and 110. The sensor provides the angular position of the rotor in
degrees in the multiples of 60, which the controller uses to determine the 60-degree sector where the
rotor is present.

The target model runs the motor at a low speed (10 RPM) in open loop and performs V/f control on
the motor. At this speed, the d-axis of the rotor closely aligns with the rotating magnetic field of the
stator. Once the hall sequence with respect to rotor zero is obtained, use this hall sequence with Six
Step Commutation block. And use same order of halls (to derive the hall sequence) obtained in this
example in the “Six-Step Commutation of BLDC Motor Using Sensor Feedback” on page 4-119
example to run the motor in closed loop control.

When the rotor reaches the open-loop position zero, it aligns with the phase a-axis of the stator. At
this position (for the corresponding Hall state), the six-step commutation algorithm energizes the
next two phases of the stator winding, so that the rotor always maintains a torque angle (angle
between rotor d-axis and stator magnetic field) of 90 degrees with a deviation of 30 degrees. Refer to
Six Step Commutation block and use the hall sequence obtained from this workflow.

The Hall sequence calibration algorithm drives the motor over a full mechanical revolution and
computes the Hall sensor sequence with respect to position zero of the rotor in open-loop control.

Note: This example works for all motor-phase or Hall sensor connections.

Hall Sensor Sequence Calibration of BLDC Motor

Energized phases

Hall b O

3(011)*«-—-—-—-—-—- 4(1,0,0)

Rotor aligned
with phase-a
[(position zero)

Hall c
Stator
magnetic field

Note: For examples that use six-step commutation using a Hall sensor, update the computed Hall
sequence value in the bldc.hallsequence variable in the model initialization script linked to the
example. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

Models

The example includes these models:

* mcb hall calibration f28069mLaunchPad
* mcb hall calibration f28379d.

You can use these models only for code generation. To open a Simulink® model, you can also use the
open_system command at the MATLAB® command prompt. For example, use this command for a
F28379D based controller:

open_system('mcb hall calibration 28379d.slx");

4-125

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Steps:

1. Enter parameters in the Configuration panel. i i -

T T Hall Sequence Calibration of 3-phase motors

3. Perform calibration by using host model. i) .

4, If the motor does not start or rotate smoothly, increase Vd Note: This example requires a TI F28379D LaunchPad with a BOOSTXL-DRVS8305 booster pack
Ref in Per Unit voltage (that can have a maximum value

of 1) in the Configuration panel.
5. If the current drawn by the connected maotor is too high, Target Model
reduce the value mentioned in step 4.

C28x B
IRGN

Configuration

Interrupt

Number of Pole Pairs 4 C28x Hardware Interrupt
r 4
SCI_Rux_INT() ADC Interruptl]
FIWM Frequency [Hz] 20000 Global Variables S
— Desired Speed 1 Desired Speed P Speed_rel_PU
Data type for control o | n fj | e -
il . L ;
algorithm ! Serial Recaive Communication Hall Calibeation
Motor Base Speed
frpm) 4000
Vd Ref in Per Unit D 1
voltage - Heartbeat LED

Copyright 2020 The MathWorks, Inc.

For details on the supported hardware configuration, see Required Hardware in the Generate Code
and Deploy Model to Target Hardware section.

Required MathWorks® Products

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
+ Fixed-Point Designer™ (only needed for optimized code generation)

Generate Code and Deploy Model to Target Hardware
This section shows you how to generate code and run the motor by using open-loop control.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board.

The host model uses serial communication to command the target model and run the motor in an
open-loop configuration by using V/f control. The host model displays the calculated Hall sensor
sequence.

Required Hardware

The example supports these hardware configurations. You can also use the target model name to
open the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* LAUNCHXL-F28069M controller + BOOSTXL-DRV8305 inverter:
mcb hall calibration f28069mLaunchPad

* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcb hall calibration £28379d

For connections related to these hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

4-126

Hall Sensor Sequence Calibration of BLDC Motor

G
1
2

enerate Code and Run Model on Target Hardware
. Complete the hardware connections.

. Open the target model for the hardware configuration that you want to use. If you want to change

the default hardware configuration settings for the target model, see “Model Configuration
Parameters” on page 2-2.

3

4

. Update these motor parameters in the Configuration panel of the target model.

Number of pole pairs

PWM frequency [Hz]

Data type for control algorithm
Motor base speed

Vd Ref in per-unit voltage

. Load a sample program to CPU2 of LAUNCHXL-F28379D. For example, you can use the program

that operates the CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx), and ensures that CPU2
is not mistakenly configured to use the board peripherals intended for CPU1.

5
6

. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

. Click the host model hyperlink in the target model to open the associated host model. You can

also use the open_system command to open the host model. Use this command for a F28379D based
controller:

0

pen_system('mcb hall calibration host f28379d.slx');

4-127

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Hall Sequence Calibration Host

Prerequisites: Calibration Output

1. Deploy the target model to the . Calibration in progress
hardware

mchb_hall calibration f28379d Hall Sequence

Calibration complete

2. You should see and verify the
variables from the target model in the
base workspace.

Steps:

Emargency Motor Slop
¥]

No port
selected

1. Select port in Host Serial Setup, Push for emergency stop
Hots Serial Receive and Host Serial Setup

Host Serial Transmit.

2. Simulate this model to start the Hall
sequence calibration for six step

control. Motor starts spinning when

calibration starts. OpenLoopPos
3. After calibration completes,

simulation ends and motor stops HallSequence ! >
automatically.

h

4, Push the Emergency Motor Stop Serial Communication Scope
button to stop the motor during
emergency.

4-128

Copyright 2020 The MathWorks, Inc.

For details on serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

You can use the Scope in the host model to monitor the open-loop rotor position and Hall sequence
values.

7. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

8. Click Run on the Simulation tab to run the host model and start Hall sequence calibration for six-
step commutation control. The motor runs and calibration begins when you start simulation. After the
calibration process is complete, simulation ends and the motor stops automatically.

Note: If the motor does not start or rotate smoothly, increase the value of the Vd Ref in Per Unit
voltage field (maximum value is 1) in the Configuration panel. However, if the motor draws high
current, reduce this value.

As a convention, six-step commutation control uses a forward direction of rotation that is identical to
the direction of rotation used during Hall sequence calibration. To change the forward direction
convention, interchange the motor phase wires, perform Hall sequence calibration again, and then
run the motor by using six-step commutation control.

Hall Sensor Sequence Calibration of BLDC Motor

Check motor’s
Hall sequence forward

calibration direction of
rotation

Implement six-
step commutation

Interchange motor
phase wires

9. See these LEDs on the host model to know the status of calibration process:

The Calibration in progress LED turns orange when the motor starts running. Notice the rotor
position and the variation in the Hall sequence value in the Scope (the position signal indicates a

ramp signal with an amplitude between 0 and 1). After the calibration process is complete, this
LED turns grey.

The Calibration complete LED turns green when the calibration process is complete. Then the
Calibration Output field displays the computed Hall sequence value.

Note: This example does not support simulation.

To immediately stop the motor during an emergency, click the Emergency Motor Stop button.

4-129

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Position Control of PMSM Using Quadrature Encoder

HW Prerequisites
1. TI FB379D LaunchPad

2. BOOSTXL-DRV8305 Booster pack

or

3.PMSM motor with QEP sensor 30 -
Steps: Reference Position Measured Position

. Edit motor & inverter parameters [degree] [degree]

This example implements the field-oriented control (FOC) technique to control the position of a three-
phase permanent magnet synchronous motor (PMSM). The FOC algorithm requires rotor position
feedback, which it obtains from a quadrature encoder sensor.

You can use this example to implement position control applications by using closed-loop FOC. The
example drives the motor to reach the input reference-position value. You can also configure the
maximum number of rotations (in either direction) for the motor in the model initialization script.

For details about closed-loop FOC, see “Field-Oriented Control (FOC)” on page 4-3 and “Closed-Loop
Motor Control” on page 6-14.

Model
The example includes the mcb pmsm PosCtrl £28379d model.

You can use this model for both simulation and code generation. You can also open the Simulink®
model using this command at the MATLAB® Command Window.

open system('mcb pmsm PosCtrl f28379d.slx');

Permanent Magnet Synchronous Motor Position Control

Simulation Input & Output

BOOSTXL-3PhGaNInv

1
2. Use Offset computation mode| to find

out position offset.

3. Update

‘pmsm.

offsel in Inil script to variable
PositionOffset’

4. Click Build, Deploy & Start in the

Hardware tab.

5. Control

6. Leam more about this example

motor via host mode|

Processor

Duty Cycles
Global Variables
Enable laOffset SpeedRef
Embedded Processor Inverter and Motor - Plant Model
Fnc losedLoop IbCHfsed PosRef Simulation Feedbacks
Debug_signals

4-130

Copyright 2020 The MathWorks, Inc.

Position Control of PMSM Using Quadrature Encoder

For details about the supported hardware configuration, see the Required Hardware topic in the
Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products
To simulate model:
* Motor Control Blockset™

To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. The Simulink® model uses default parameters that you can replace
with values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189. The parameter
estimation tool updates the motorParam variable (in the MATLAB® workspace) with the estimated
motor parameters.

2. Update motor parameters. If you obtain the motor parameters from the datasheet or from other
sources, update the motor and inverter parameters in the model initialization script associated with
the Simulink® model. For instructions, see “Estimate Control Gains and Use Utility Functions” on
page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts the motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open the model included with this example.

2. Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector in the Review Results section to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section shows how to generate code and run the FOC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. Before you can run the host model
on the host computer, deploy the target model to the controller hardware board. The host model uses
serial communication to command the target Simulink® model and run the motor in closed-loop
control.

4-131

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-132

Required Hardware

The example supports this hardware configuration. You can also use the target model name to open
the model from the MATLAB® command prompt.

LAUNCHXL-F28379D controller + (BOOSTXL-DRV8305 or BOOSTXL-3PHGANINYV) inverter:
mchb pmsm PosCtrl £28379d

Note: When using the BOOSTXL-3PHGANINV inverter, ensure that you have proper insulation
between the bottom layer of BOOSTXL-3PHGANINV and the LAUNCHXL board.

For connections related to this hardware configuration, see “LAUNCHXL-F28069M and LAUNCHXL-
F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model by default computes the ADC offset values for phase current measurement. To disable
this functionality, update the value of the inverter.ADCOffsetCalibEnable variable in the model
initialization script to 0.

Alternatively, you can compute the ADC offset values and update them manually in the model
initialization script. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and Calibrate
ADC Offset” on page 4-10.

4. Compute the quadrature encoder index offset value and update it in the model initialization script
associated with the target model. For instructions, see “Quadrature Encoder Offset Calibration for
PMSM Motor” on page 4-80.

5. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

6. Load a sample program to CPU2 of the LAUNCHXL-F28379D board. For example, load the
program that operates the CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx). This ensures
that CPU2 is not mistakenly configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model.

open_system('mcb _pmsm host model PosCtrl.slx');

Position Control of PMSM Using Quadrature Encoder

Position Control Host

Prerequisites:
1. Deploy the target model to the hardware .
mcb_pmsm_PosCtrl_28379d Scope signals

2 You should see and verify the variables from 30 Stop Start — Speed Contra
the target model in the base workspace.

Steps: Reference Position Measured Position Id Cﬂﬂtr0|
1. Select port in Host Serial Setup, [Degrees) Motar [Degrees]
Host Serial Receive and |q Control
Host Serial Transmit
2. Simulate this model

3. Use Start [Stop Motor switch to control the Signal 1 -
4 ErﬁfrrlReference position in degrees using No port - D
. Il 1 il
Bdil box Selected Signal 2 >
5. Observe Measured position in degrees at the . -
display box P g Host Serial Setup Serial Communication Scope

Copyright 2020 The MathWorks, Inc.
For details on serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.
9. In the dialog of the Host Serial Setup block in the host model, select a Port name.

10. Update the Reference Position [Degrees] value in the host model. By default, the maximum
number of rotations (in either the positive or negative direction) is five. You can change this value by
setting the PosCtrlPosLimit variable in the model initialization script. You can open this script by
using the hyperlink named Init script in the target model.

Maximum rotation limit (degrees) = PosCtrlPosLimit x 360

Note: You cannot control the speed of rotation of the motor, but you can limit it by setting the
PosCtrlSpeedLimit variable (in per-units). For details about the per-unit system, see “Per-Unit
System” on page 6-20.

11. Click Run on the Simulation tab to run the host model.
12. Change the position of the Start / Stop Motor switch to Start, to start running the motor.

13. Observe the debug signals from the RX subsystem, in the Time Scope of host model. You can
select the debug signals that you want to monitor in the Scope signals section of the host model.

* Speed Control - Display speed reference and speed feedback signals in the scope.
* Id Control - Display Id reference and Id feedback signals in the scope.

* Iq Control - Display Iq reference and Iq feedback signals in the scope.

* Ia & Ib - Display la and Ib current signals in the scope.

» Position Control - Display position reference and position feedback signals in the scope.

4-133

4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Integrate MCU Scheduling and Peripherals in Motor Control
Application

[ADC Channel

This example shows how to identify and resolve issues with respect to peripheral settings and task
scheduling early during development.

The following are typical challenges associated with MCU peripherals and scheduling:

* ADC-PWM synchronization to achieve current sensing at mid point of PWM period
» Incorporate sensor delays to achieve the desired controller response for the closed loop system
* Studying different PWM settings while designing special algorithms

This example shows how to use SoC Blockset to address these challenges for a motor control closed-
loop application in simulation and verify on hardware by deploying on to the TI Delfino F28379D
LaunchPad.

Required hardware:

e TI Delfino F28379D LaunchPad or TI Delfino F2837xD based board
« BOOSTXL-DRV8305EVM motor driver board
e Teknic M-2310P-LN-04K PMSM motor

Model Structure

open_system('soc pmsm singlecpu foc');

Field Oriented Control In Single CPU

[Controller

| soc_pmsm_singlecpu_ref PWM Channel
SpeadLoop #15 D10.0005]
—]—D ADCInterupiExp
EcCEvent '_‘_a'ﬂl{‘,lmerrupt] ni PWM1 duty 1
Task Manager
vin Count S ADC PWM2 PWM —

- ounts 1 | ADC2 PWM3 duty3
5 5 - 3 ;
- a [Va

Control Algarithm

[Plant

4-134

Feedbacks_sim Duty_Cycles

Inverter and Motor

Copyright 2020 The MathWorks, Inc

Integrate MCU Scheduling and Peripherals in Motor Control Application

Open the soc pmsm_singlecpu foc model. This model simulates single CPU motor controller,
contained in soc_ pmsm_singlecpu ref model, for a Permanent magnet synchronous motor inverter
system. Controller senses the outputs from the plant using ADC Interface (SoC Blockset) and actuates
using PWM Interface (SoC Blockset) that drives the inverter. Algorithm blocks from Motor Control
Blockset™ is used in this example.

ADC Acquisition Time

ADC hardware contains a sample and hold circuit to sense the analog inputs. To ensure complete
ADC measurement, the minimum acquisition time must be selected to account for the combined
effects of input circuit and the capacitor in the sample and hold circuit.

Open ADC Interface block and change the default acquisition time to 100ns. Run the simulation and
view the results in Simulation Data Inspector and observe there is a distortion in current waveforms.
The low acquisition time resulted in ADC measurements not reaching their true value. As a result, the
controller reacts by generating a relative duty cycle causing variations in current drawn by the motor.
These figures show the reaction to the incorrect ADC measurement and overdraw in the phase A
current channel, with phase A current in blue and phase B current in orange. The simulated speed
feedback shows significant oscillations during open loop to closed loop transition, which in real world
will halt the motor.

W lab_fb(1) W lab_fo{2)
020

[RTRIRIRIRIMIRIRI1T M|

PWM Channel-1(1) M Speed_fb ® EnClosedLoop

To fix this issue, open ADC Interface blocks change and change acquisition time to a larger value,
320ns. This value is the minimum ADC acquistion time recommended in Table 5-42 of the TI Delfino
F28379D LaunchPad data sheet. Run the simulation and view the results in Simulation Data

4-135

matlab:Simulink.sdi.view
https://www.ti.com/lit/ds/symlink/tms320f28377d.pdf?ts=1594824760969
https://www.ti.com/lit/ds/symlink/tms320f28377d.pdf?ts=1594824760969
matlab:Simulink.sdi.view

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Inspector. This figure shows the accurately sampled ADC values and the controller tracking the
reference value as expected.

Wlab_fb(1) mlab_b(2)

Right ADC setting results in right sinusoidal
currents seen by controller

PWM Channel:1(1) M Speed_fo ™ Speed_ref M EnClosedLoop

4-136

004 0.08 008 010 012 014 018 01g 020 022 024 028 022 030 032 034 038 038 0.40 042 044 048 048 050 052 054 056 058 060

Verify simulation results against hardware by deploying the model to the TI Delfino F28379D
LaunchPad. On the System on Chip tab, click Configure, Build, & Deploy to open the SoC Builder
(SoC Blockset) tool.

In the SoC Builder tool, on Peripheral Configuration tool, set ADC > SOCx acquisition window
cycles parameter to 13 ADC clock ticks for the ADC B and C modules. The ADC acquisition clock
ticks parameter must be set to the simulation time value, set in the ADC Interface block, multiplied
by the ADC clock frequency. You can get the ADC clock frequency from the model hardware settings.
Open the soc pmsm singlecpu ref model. On the System on Chip tab, click Hardware Settings to
open the Configuration Parameters window. In the Hardware Implementation > Target
hardware resources > ADC_x section, you can see the ADC clock frequency in MHz parameter
value. This figure shows the ADC Interface block setting for simulation and peripheral app setting for
deployment. Use same setting in simulation and codegen to ensure expected behavior.

matlab:Simulink.sdi.view

Integrate MCU Scheduling and Peripherals in Motor Control Application

Fal

ADC Interface *

Simulates the analog-to-digital conversion (ADC)

The block samples the analog input based on a start event and
outputs a representative digital value in counts.

Also, it generates an "End of Conversion Event” which can be used
for scheduling an algorithm.

Acquisition time and Conversion time parameter values sets the
delays in the conversion.

Parameters

Resolution (bits): |12 b

Voltage reference (V): 3

N | 1

(Acquisition time (s): [320e-0

Conversion time (s): 240e-9

OK Cancel Help Apply

4\ Peripheral Configuration

Peripheral Configuration for Tl Delfino F28379D LaunchPad

Simulink block:

soc_pmsm_singlecpu_refiCurrent Control/ADC Read1 w

PWM
Parameters:
Module: B v
Start of conversion: S0Co v
Conversion channel: ADCINZ v
~

(SOCx acquisition window (cycles). |13)
S0Cx trigger source: ePWM1 ADCSOCA A
ADCINT will trigger SOCx: Mo ADCINT v
/| Enable interrupt at EOC
Interrupt Selection: ADCINTA v

/] Interrupt continuous mode

On Select Build Action page, to monitor data from hardware select Build and load for
External mode. This figure shows the data from hardware with accurately sampled ADC values and
the controller tracking the reference value as expected.

Column 1: Hardware results - Current and Speed feedback

m lab_ (1) miab fo(f) Column 2: Average simulation results - Current and Speed feedback
i
015 LEER) "
I
010 f4
005 M
oY
0.05 V
10 1
¥
015 0.15
005 010 015 020 025 030 035 0s0 015 050 055 o 005 010 a5 020 025 030 035 030 [050 055 080
m Speed_ref m Speed_fb u Speed_fb m Speed_ref

10 10

0o 09

08 08

o7+t —Semae e 07 - —
08 06

05 (LSS sss 05 =

04 04

03 03

02 / 02

LRS- 01p,

of o

005 .10 0.15 020 025 030 0.35 040 045 0.50 055 0. 005 0.10 0.15 020 025 030 035 040 0.45 050 0.55 0.80

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-138

ADC-PWM Synchronization

The BOOSTXL-DRV8305EVM motor driver has a 3-phase inverter built using 6 power MOSFETS. This
motor driver board uses a low-side shunt resistor to sense motor currents. The Current sense circuit
amplifies the voltage drop across the shunt. This setup ensures low power dissipation, since the
current only flows through the shunt when the bottom switches are on and away from PWM
commutation noise. This figure shows the low-side shunt resistor circuit in BOOSTXL-DRV8305EVM
motor drive.

PVDD

Current sense sni NT7
- - —
circuit R4

For correct operation, current sensing must occur during the mid point of the PWM period when
ADCs trigger. Specifically, the PWM counter must be at the maximum value when the bottom switches
are active in the Up-Down counter mode. Current sampling at a different instance results in a
measured currents of zero.

To analyze this case, switch the model to high fidelity inverter simulation mode. Change the plant
variant to use detailed MOSFET based 3-phase inverter to replicate BOOSTXL-DRV8305EVM.

set param('soc pmsm singlecpu foc/Inverter and Motor/Average or Switching',...
'LabelModeActivechoice', 'SwitchingInverter');

Change the Output mode parameter of PWM Interface (SoC Blockset) to Switching and connect 6
PWMs to the Mux block.

Integrate MCU Scheduling and Peripherals in Motor Control Application

set param('soc_pmsm_singlecpu foc/PWM Channel/PWM Interface', 'OutSigMode', 'Switching');
set param('soc_pmsm_singlecpu foc/PWM Channel/PWM Interfacel', 'OutSigMode', 'Switching');
set param('soc_pmsm_singlecpu foc/PWM Channel/PWM Interface2', 'OutSigMode', 'Switching');

Delete existing connection between PWM Interface block and Mux.

h = get param('soc pmsm singlecpu foc/PWM Channel/Mux', 'LineHandles"');
delete line(h.Inport);

As a last step, connect 6 PWM outputs to Mux.
set _param('soc_pmsm singlecpu foc/PWM Channel/Mux', 'Inputs','6');

add line('soc pmsm singlecpu foc/PWM Channel',

{'PWM Interface/l', 'PWM Interface/2', 'PWM Interfacel/1l',...

'"PWM Interfacel/2', 'PWM Interface2/1', 'PWM Interface2/2'},

{'Mux/1', '"Mux/2", 'Mux/3"', 'Mux/4', '"Mux/5"', 'Mux/6'}, ‘'autorouting', 'smart');

Open the PWM Interface blocks and set Event trigger mode to End of PWM period. Run the
simulation and view the results in Simulation Data Inspector. In the figure, phase A and phase B
currents are approximately zero current. This results in a loss of feedback and no actuation in the
control loop. Select Enable task simulation in Task Manager block to simulate and visualize
tasks in Simulation Data Inspector.

® PWM Channel2:1(2) ® ADClnterrupt

Preempted

waiting

0.08500 005505 008510 005515 0.05520 0.08525 0.08520 0.08525 0.08540 0.08545 0.08550 0.08555 005560 0.05565 005570 0.08575 0.08560 0.08585 0.08500 008505 0.056(

m Invertert:1(1) m ADCinterrupt

Eresmpted

Waiting

0.05500 005505 005510 005515 0.05520 0.08525 0.08520 0.08535 0.05540 0.08545 0.08550 0.08555 0.05560 0.05565 005570 0.08575 0.08560 0.08585 0.08500 008505 0.05600

R W lab_fb(1) mlab_fo(2)

40
0.05500 0.05505 0.05510 005515 0.05520 0.05525 0.05520 0.05525 0.05540 005545 005550 005555 005560 0.08565 005570 0.08575 0.0550 0.08535 005500 008505 0.058¢

4-139

matlab:Simulink.sdi.view

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

To fix this issue, change the Event trigger mode to Mid point of PWM period, equivalent to the
PWM internal counter being at a maximum. Run the simulation and view the results in Simulation
Data Inspector.

W PWM Channel2:1(2) m ADCinterrupt

Wiaiting 4—

0.05000 0.05005 0.05010 0.05015 0.05020 0.05025 0.08020 0.05035 0.05040 0.05045 0.05050 0.05055 0.05080 0.05085 005070 0.05075 0.05080 0.08085 005000 008008

W Inverter1:1(1) m ADCInterrupt

0.05000 0.05005 0.05010 0.05015 0.05020 0.05025 0.05020 0.05025 0.05040 0.05045 0.05050 0.05055 0.05080 0.05085 0.05070 0.05075 0.05080 0.05085 0.05000 0.05005

m lab_fb(1)

0.08000 0.05005 005010 0.05015 0.05020 0.05025 0.08020 0.05025 0.08040 0.05045 0.05050 0.05055 0.05080 0.05085 0.05070 0.05075 0.05080 0.05088 0.05000 0.05005

Deploy the model on to the TI Delfino F28379D LaunchPad using the SoC Builder (SoC Blockset) tool.
In the SoC Builder tool, on Peripheral configuration tool, set PWM event condition to Counter
equals to period. Use same setting in simulation and codegen to ensure expected behavior. This
figure shows the PWM Interface block setting for simulation and the Peripheral Configuration tool
setting for deployment.

4-140

matlab:Simulink.sdi.view
matlab:Simulink.sdi.view

Integrate MCU Scheduling and Peripherals in Motor Control Application

ik WN

[3] Block Parameters: PWM Interface
PWM Interface
Simulates the pulse width modulation (PWM)

The block outputs either a switching pulse width modulated

waveform or pass the duty cycle value to the output.
Also, it generates an "Event” which can be used for synchronizing
PWM with ADC or as PWM interrupts to trigger a control algorithm.

Parameters

PWM waveform period (s): |50e-6

Output mode: | Switching
Counter mode: | Up-Down

Sampling mode: | End of PWM period

Dead time (s): |100e-9

Event trigger mode: |Mid of PWM period

Data type: single

[ox]| cance

Apply

‘4 Peripheral Configuration

Peripheral Configuration for Tl Delfino F28379D LaunchPad

ot Simulink block: [soc_pmsm_singbcou_reﬂCurrenl Control/PWM Write v |
Parameters:
PWM Module: | ePWM1
High speed clock divider |1
Timer base clock divider: (1
1| Period (clock cyeles): 5000

| Enable phase offset

2 | Count mode | Up-Down
Action on counter=zero: \ Do nothing
Agction on counter=period: | Do nothing
Action on counter=CMPA on up count | Clear
Action on counter=CMPA on down count: \ Set

/| Enable shadow mode
3| Reload CMPA register: | Counter equals to zero (CTR=Zero)

ADC Start of conversion for ePWMxA module: | Counter equals to period (CTR=PRD)

4| Dead band (cycles): 120

This figure shows the data from simulation and hardware with correct ADC-PWM synchronization and
the controller tracking the reference value as expected.

4-141

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

m lab_fb(1) Column 1: Hardware results - Current and speed feedback mlab_(1) Column 2: Switching simulation results - Current and Speed feedback
0.15 0.15
b
0.10 14 0.10
0.05 .” 0.05
l pananannaanatananadardfin, 0k r s tnniabahebelinahod)
D I"\ 1 ! ‘ ‘ Wi W e -
| 2y] Vil R T R L L AR A L L AR AL 11111,
0.05 “'Lf' 0.05
0.10 0.10
o1 0.1
0.05 0.10 0.15 020 0.25 0.30 0.35 040 045 0.50 055 0.60 [005 0.10 0.15 0.20 o025 0.30 035 040 0.45 050
. Speed_ref ® Speed_fb . Speed_fb ™ Speed_ref
oe o8
o8 08
o7 0
e 02
05 0s
04 04
02 03
0z 02
01 0.1
0 0
obs o0 os 020 o= 3 S o0 o oko ks o 005 o0 s o0 %= 030 oks 040 os 050

See Also

* “Get Started with SoC Blocks on MCUs” (SoC Blockset)
» “Partition Motor Control for Multiprocessor MCUs” on page 4-143

Copyright 2020-2021 The MathWorks, Inc.

4-142

Partition Motor Control for Multiprocessor MCUs

Partition Motor Control for Multiprocessor MCUs

This example shows how to partition real-time motor control application on to multiple processors to
achieve design modularity and improved control performance.

Many MCUs provide multiple processor cores. These additional cores can be leveraged to achieve a
variety of design goals:

» Divide the application into real-time tasks, such as control laws, and non-real time tasks, such as
external communication, diagnostics, or machine learning

» Partition the control algorithm to run on multiple CPUs to achieve higher loop rate

* Run the same application in multiple CPUs for safety critical applications

This example shows how to partition motor control application across two CPUs of the TI Delfino
F28379D to achieve higher sampling time/PWM frequency.

Required hardware:

e TI Delfino F28379D LaunchPad or TI Delfino F2837xD based board
« BOOSTXL-DRV8305EVM motor driver board
e Teknic M-2310P-LN-04K PMSM motor

Partition Motor Control Algorithm
Open the soc pmsm singlecpu foc model. This model simulates a single CPU motor controller,

contained in the soc pmsm singlecpu ref model, for a permanent magnet synchronous machine
(PMSM).

4-143

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Permanent Magnet Synchronous Motor
Field Oriented Control

System System

Initialize Terminate P50

Trigges()
ldgRef PU —h@—b Idg_ref_PU PWHMI1

’IE’ Speed_Meas_PU spd_Ref P2
FWMZ
apd_ et 3 FWM3 Z{B

ADCH FWM3

Speed Control (3 =4 Speed_fo
ADC2

Current Control

We partition the control algorithm by executing current control on CPU2, and speed control and
position estimation on CPU1 respectively. Data transfer between the CPU's are handled by
Interprocess Data Channel block. For more information see “Interprocess Data Communication via
Dedicated Hardware Peripheral” (SoC Blockset).

Open the soc pmsm_dualcpu_foc model.

open_system('soc pmsm dualcpu foc');

4-144

Partition Motor Control for Multiprocessor MCUs

[cPU1

Field-Oriented Control on Dual CPU Processor

[cPu2

SpeedLoop

FluxObserver [or— =
r =1 » apcinievent |1 ADCInt
© © —‘

Task Manager 1 Task Manager 2 -
PWM Channel
soc_pmsm_cpul_ref
2 0al5 050 s0c_pmsm_cpu2._ref
[1PC Channel 1 duty? futy1
VI_fb lg_Pos_EnClosed _[[= ,__’ 4 :&}aout ———————3IFC duty2 PWM f—
Nt A L=V | = ="t VILIPC g duty
Speed Control = 8 - 2

[ABC Channel

slart2 4

counts?

countst

EoCEvent

1 \in

Plant

Duty_Cycles

Inverter and Motor

Copyright 2020 The MathWorks, Inc.

On the System on Chip tab, click Hardware Settings to open the Configuration Parameters
window. In the Hardware Implementation tab, the Processing Unit parameter is configured to
"None" indicating it is the top-level system model.

Open the soc pmsm cpul ref model and open the soc pmsm cpu2 ref model to view algorithms
configured for each CPU. Model references contained within the system model are configured to run
on c28xCPU1 (CPU1) and c28xCPU2 (CPU2).

On the Simulation tab, click 'Run' to simulate the model. Open the Simulation Data Inspector and

view signals. This figure shows results from the single and dual CPU models in simulation and
deployment.

4-145

matlab:Simulink.sdi.view

4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

HW_singleCPU_Speed_fb m HW_dualCPU_Speed_fb

Sim_dualCPU_Speed_fb m Sim_singleCPU_Speed_fb

4-146

Performance Improvement with Concurrent Execution

Using both CPUs to execute control algorithms allows us to achieve higher controller bandwidth. In
the original single CPU model, the control algorithm takes just over 25us to execute. To provide a
safety margin, single CPU model uses a PWM frequency of 20kHz, equivalent to 50us period.

After partitioning, the CPU1 and CPU2 execution times reduce to less than 20us. Allowing the PWM
frequency to be increase to 40kHz. In the soc_mcb _pmsm_foc sensorless f28379d data.m
script, set PWM frequency to 40e3 and run the script to configure the model to the new PWM
frequency. With faster sampling of currents, controller gains can then be tuned to achieve faster
response times.

Deploy the model to the TI Delfino F28379D LaunchPad using the SoC Builder (SoC Blockset) tool. To
open the tool, on the System on Chip tab, click Configure, Build, & Deploy, and follow the guided
steps.

This figure shows the controller response from simulation and deployment at 25us current loop with
40kHz PWM frequency compared with 50us current loop at 20kHz frequency. As expected, the rise
time in speed improves with faster current loop by approximately 50 percent.

Partition Motor Control for Multiprocessor MCUs

HW_20Khz_Speed_fb m HW_40Khz_Speed_fb Sim_20Khz_Speed_fo m Sim_40Khz_Speed_ib
0.5
0.80
0.5
0.80
0.7
0.734
0.703 070 0699
065
0.60
0.566 0.564

028 020 0320 0310 0.011 0.3 033 034 035 0.3 028 027 028 020 030 0310 0.011 0.321 033 03¢ 035 0.3

Speed response is oscillatory because of sensorless algorithm, for more information see “Sensorless
Field-Oriented Control of PMSM” on page 4-61

For higher simulation granulairty, set the PWM Interface block output to Switching Mode and change
the plant model variant to use the MOSFET simulation.

See Also

¢ “Get Started with SoC Blocks on MCUs” (SoC Blockset)
* “Integrate MCU Scheduling and Peripherals in Motor Control Application” on page 4-134

Copyright 2020-2021 The MathWorks, Inc.

4-147

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Frequency Response Estimation of PMSM Using Field-Oriented
Control

This example performs frequency response estimation (FRE) of a plant model running a three-phase
permanent magnet synchronous motor (PMSM). When you simulate or run the model on the target
hardware, the model runs tests to estimate the frequency response as seen by each PI controller (also
known as raw FRE data) and plots the FRE data to provide a graphical representation of the plant
model dynamics.

When the motor runs in a steady state, the online Frequency Response Estimator block that is
connected to each PI control loop (Id current, Iq current, and speed) sequentially perturbs the PI
controller output and estimates the frequency response of the plant model as seen by each PI
controller. You can use the frequency response of the plant to estimate the PI controller gains.

wref

Speed™f 1grf
(5p) = q
controller
(speed)
Wey

Wey

I + Bl Ve

Frequency (1q J Pl 9 Frequency (Ve + A=)
Response controller Response

Estimator Estimator

Duty l Voc
Frequency Inverse Space Cydes
175 =0 controller Response park vector
e (current Id i o transform enerator
Iy (} j Estimator (V4= + AV, Vg b

singy| cos,
I la
d
| Park Clarke
b A transform transform
1
B

Sine- Mech
cosine to elect

Va| Vi Vel
li
=
Iy
[
&
lockup position

Wy Speed | Bem O Sensor Position
measurement decoder feedback

The model uses the field-oriented control (FOC) technique to control the PMSM. The FOC algorithm
requires rotor position feedback, which is obtained by a quadrature encoder sensor. For details about
FOC, see “Field-Oriented Control (FOC)” on page 4-3.

Models
The example includes the model (target model) mcb pmsm freq est f28379d.

You can use this model for both simulation and code generation. You can also use the open_system
command to open the model.

open_system('mcb pmsm freq est f28379d.slx');

4-148

Frequency Response Estimation of PMSM Using Field-Oriented Control

Permanent Magnet Synchronous Motor Field Oriented Control

Note: This example requires a Tl F28379D LaunchPad with a BOOSTXL-DRV8305 booster pack or BOOSTXL-3PhGaNInv
connected to a PMSM Motor with QEP Sensor

HW_INT

Code generation

HW_INT

Simulation

SCLRx Bifled Speed

o
e

Trig_Fre

Abaort_Fra

Speed_Ref_PU
IdqRtef_ PU
Speed_Meas_PU

Serial -Receive

Speed Control

() initialize

Hardware Init

Blink LED

o af ™
B}

Idq_ref_PU Duty Cycles

Feadbacks_sim Speed_fb

Duty_Cycles Feedbacks_sim

Cument Control

Global memory

oFin
ofin

| EnClosedLoop Fre laOffset

| SpeedRef

Fra_Trig

FRE_Abort

IgFreDone FreqData

Debug_signals

SpdFreDone

| | IdFreDone
| FreDataAvbl

IbOffset |

| Enable |

Freq Seq Control

Copyright 2020 The MathWorks, Inc.

Explore more:

Inverter and Motor - Plant Model

1. Edit motor & inverter parameters

2, Use Offset computation model to find out position offset.

3. Update offset in Init script to variable ‘pmsm.PositionOffset’
4. Build, Deploy & Start

5. Control motor via host model

6. Run Simulation and Plot freq response

7. Leam more about this example

For details regarding the supported hardware configuration, see the Required Hardware topic in the
Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products

To simulate model:

* Motor Control Blockset™

* Simulink Control Design™
To generate code and deploy
1. Motor Control Blockset™

2. Embedded Coder®

model:

3. Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

4. Simulink Control Design™

Prerequisites

1. Obtain the motor parameters. The Simulink® model uses default motor parameters that you can

replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

4-149

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open the target model included with this example.

2. Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector on the Simulation tab to view and analyze the simulation results.

4. On the target model, click the Plot freq response hyperlink to plot the frequency response data of
the plant model (sys sim id, sys sim iq, and sys sim spd variables in the workspace) that the
speed control loop and the current control loops measure.

Generate Code and Deploy Model to Target Hardware

This section shows you how to generate code, run the FOC algorithm on the target hardware, start
frequency response estimation, and plot the FRE data.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports this hardware configuration. You can also use the target model name to open
the model from the MATLAB® command prompt.

o« LAUNCHXL-F28379D controller + (BOOSTXL-DRV8305 or BOOSTXL-3PHGANINYV) inverter:
mcb pmsm freq est f28379d

Note: When using the BOOSTXL-3PHGANINV inverter, ensure that proper insulation is available
between the bottom layer of BOOSTXL-3PHGANINV and the LAUNCHXL board.

For connections related to the hardware configurations, see “LAUNCHXL-F28069M and LAUNCHXL-
F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the variable inverter.ADCOffsetCalibEnable to 0 in the model
initialization script.

4-150

Frequency Response Estimation of PMSM Using Field-Oriented Control

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Compute the quadrature encoder index offset value and update it in the pmsm.PositionOffset
variable available in the model initialization script associated with the target model. For instructions,
see “Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-80.

5. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D. For example, load the program that
operates the CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx) to ensure that CPU2 is
not mistakenly configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model.

open_system('mcb pmsm freq host f28379d.slx');

PMSM Frequency Response Estimation Control Host

2leps:
1. Select port in Host Serial Setup, Host Serial Receive and Host Serial Transmit

Steps:
2, ‘Motor Start [Stop” switch b 10T, Mo port Scope (Per-Unit) » D
Use 'Motor Start / Stop” switch to control motor. o

3. Enter the requested speed in ‘Reference Speed' block.
4, Observe the debug signals in scope.

5. Start the Motor and click FRE Trigger to start frequency estimation in the target hardware, Host Serial Setup SelectedSignals
6. Select the Debug signals "Raw FRE data” to recieve the raw FRE data, Debug? (S1 units)
7. Wait until the "FRE Status™ LED turns green, which indicates that the FRE data is received.

8. Click FRE Plot to plot the plant frequency data for the Speed confrol loog, Id Current control loop
and Ig Current conirol loop.

9. Simulate the target model and compare simulation FRE results with the hardware test results,

i

10. Leamn more about this example Debug? (51 units)
Note:
Click 'FRE Piof' when FRE Status” LED turns green.
2000 Stop Start
FRE Status
Reference Speed Motor FRE Plot
(RPM)
Debug signals
Speed Control
FRE Trigger FRE Abort
99 Id Control
lq Control

Copyright 2020 The MathWorks, Inc.

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

4-151

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-152

9. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

10. Change the position of the Start / Stop Motor switch to On to start running the motor.
11. Update the Reference Speed value in the host model.

12. Select the debug signal that you want to monitor in the Debug signals section of the host model.
Observe these signals in the SelectedSignals time scope window.

13. Click the FRE Trigger button to start the FRE process on the target hardware.

14. Select Position & Raw FRE data in the Debug signals section of the host model to start
receiving the raw FRE data from the target hardware. The FRE Status LED turns amber to indicate
that the host model is receiving raw FRE data from the target hardware.

Note: The LED shows the correct status only when you select Position & Raw FRE data in the
Debug signals section. Otherwise, the LED remains grey.

15. Check the status of the FRE Status LED on the host model. The LED turns green after the host
model receives all the raw FRE data from the target hardware.

16. Click the FRE Plot button to plot the raw FRE data received from the target hardware.
17. On the host model, click Stop on the Simulation tab to stop the simulation.

18. Click the compare hyperlink in the host model to plot the raw FRE data generated during
simulation and hardware run and compare them.

For an accurate comparison, use the same reference speed during simulation and when running the
example on the target hardware.

Frequency Response Estimation of PMSM Using Field-Oriented Control

Magnitude [dB)

Magnitude [dB)

Magnitude [dB)

Speed loop (mag) - Ig ref/ Spd meas Speed loop (phasea) - Ig ref / Spd meas

N

=)
T

lardwara

=270

Phase [deg)

g

10' 10% 10* 10" 10! 10% 10°
Frequency (Hz) Frequency (Hz)

id Current loop (mag) - Vd out / |d meas ld Current loop (phase) - Vd cut/ |d meas

Lardwars

—Sim

— =80
a
=
@ =180
8
oot
-360[
- - - =450 - L —
10 10% 10% 10 10 10% 10* 10°
Frequency (Hz) Frequency (Hz)
lg Current loop (mag) - Vg out / |g meas lg Current loop (phase)- Vg out/ Ig meas
T T a) v T
B

Phase (deg)
g 8 o

(]

=1

=]
T

10° 10% 10 10! 10% 10* 10°
Frequency (Hz) Frequency (Hz)

NOTE:
* To stop the FRE process any time, click the FRE Abort button.
» To stop the motor immediately, turn the Start / Stop Motor switch Off.

Configure Frequency Response Estimator Block

Configure these parameters in the Frequency Response Estimator block (from Simulink Control
Design™ toolbox) mask:

* Sample time (Ts) - Enter a block sample time that is identical to that of the PI controller.

» Frequencies - Enter an array of frequencies at which the block perturbs the PI controller output to
estimate the frequency response of the plant. This field uses the (single data type) workspace
variable fre.i freq to store the array of perturbation signal frequencies.

4-153

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-154

Note: By default, the model uses an array size of 15. However, you can configure the array size.

The start/stop signal value of 1 that started the FRE experiment should change to 0 only after the
perturbations and tests for all the frequencies are complete and the FRE experiment ends.

* Amplitudes - Enter the amplitude of the perturbation signals that the block applies to the PI
controller output to estimate the frequency response of the plant. This field uses the (single data
type) workspace variable fre.i amp to store the common amplitude value of the perturbation
signals.

A high amplitude produces disturbances when the motor runs. An amplitude that is too low results in
an inaccurate FRE.

For more details about the Frequency Response Estimator block, see Frequency Response Estimator
(Simulink Control Design).

Frequency Response Estimator Block Output

The Frequency Response Estimator block (connected to each PI controller) performs an FRE
experiment by perturbing the PI controller output using the sequence of frequencies stored in
fre.i freq.

For each perturbation signal (represented by a frequency) the block estimates the plant frequency
response in the form of a complex number. Therefore, the block uses the array of frequencies to
generate an array of complex numbers (raw FRE data). The sequence of complex numbers contains
the information related to gain and phase delay.

Controlling FRE Experiments

The State Machine Control subsystem algorithm enables the three Frequency Response Estimator
blocks one at a time (and runs the three FRE experiments) in this order by using the start/stop input
port of the Frequency Response Estimator block:

1. FRE block connected to Id control loop
2. FRE block connected to Iq control loop
3. FRE block connected to speed control loop

The state machine control ensures that the time interval between the start and stop signals is greater
than or equal to the FRE experiment length (as displayed by the Frequency Response Estimator block
dialog box). If you change the perturbation signal frequencies, ensure that the state machine control
sends the stop signal only after the FRE experiment ends.

For more details about the Frequency Response Estimator block, see Frequency Response Estimator
(Simulink Control Design).

Plot Frequency Response After Simulation

After the simulation ends, the target model stores the frequency response (or the raw FRE data) in
these workspace variables:

* out.Idfreqdata- Raw FRE data for the Id current PI controller.

* out.Igfreqdata - Raw FRE data for the Iq current PI controller.

Frequency Response Estimation of PMSM Using Field-Oriented Control

* out.Spdfreqdata - Raw FRE data for the speed PI controller.

When you click the Plot freq response hyperlink in the target model, the model plots the frequency

response for the three PI controllers.

Speed loop (mag) - lq ref/ Speed meas

B o ¥

Magnitude [dB)

&

10?

10’ 10* 10?
Frequency (Hz)

d Current loop (mag) - Vd out / |d meas

Magnitude [dB)
o

10* 10* 10!
Frequency (Hz)

Magnitude [dB)
&

lg Current loop (mag) - Vg out / |g meas

10° 10° 10!
Frequency (Hz)

Speed loop (phase) - Ig ref ! Speed meas

Phase [deg)
3

:

-540 I " _
10° 10 10* 10?
Frequency (Hz)

i Current loop (phase) - Vd out / |d meas

Phase [deg)
3

:

-540 . "
10 10* 10* 10!
Frequency (Hz)

Iq Current locp {Phase) - Vg out / |g meas
180 T

Phase [deg)
3

:

10! 10° 10° 10!
Frequency (Hz)

The target model uses these commands to plot the frequency responses as seen by the three PI

controllers.

Frequency response of Id current PI controller:

sys sim id = frd(out.Idfreqdata,fre.i freq*2*pi);

4-155

4 n

plement Motor Speed Control by Using Field-Oriented Control (FOC)

bode(sys sim id);

Frequency response of Iq current PI controller:

sys sim iq = frd(out.Igfreqdata,fre.i freq*2*pi);
bode(sys sim iq);

Frequency response of speed PI controller:

sys sim spd = frd(out.Spdfreqdata,fre.spd freq*2*pi);
bodeplot(sys sim spd);

For more information about these commands, see these files:

* mcb_pmsm_freq est plot.m

* mcb_pmsm freq host est plot.m

Send Raw FRE Data to Host Model

When running the target model on the hardware, the target model transfers the raw FRE data
continuously to the host model.

The target model splits the entire sequence of complex numbers (or raw FRE data) from each FRE
block into real and imaginary arrays and adds headers to separate them. It uses this format to send
the raw FRE data from each FRE block to the host model using serial communication.

Complex numbers Complex numbers Complex numbers Status Complex numbers
(from Id Pl controller FRE) {from lq Pl controller FRE) (from speed PI controller FRE) Flag (from Id Pl controller FRE) (fr
Packet 1 Packet 2

H H ———» Headers for real parts
n ﬂ ————— Headers for imaginary parts

———» Array of real parts

——— Array of imaginary parts

4-156

Plot Frequency Response When Using Target Hardware

After receiving the message from the target hardware, the host model decrypts the message and
stores the array of complex numbers (raw FRE data) in these workspace variables:

+ IdfregData - Raw FRE data for the Id current PI controller.

Frequency Response Estimation of PMSM Using Field-Oriented Control

Phase {deg) Magnitude (dB)

Phase (deg) Magnitude (dB)

Phase (deg) Magnitude (dB)

+ IqgfreData - Raw FRE data for the Iq current PI controller.

* SpdfreqData - Raw FRE data for the speed PI controller.

When you click the FRE Plot button, the host model plots the frequency response for the three PI

controllers.

Speed loop - Iq ref /| Speed meas

20 [

-20 [
-40 [~

60 =

720

360 -

—
IR e S

10"

10° 10
Frequency (Hz)

Id Current loop - Vd out / Id meas

S s S R

e L
e o

Ig Current loop - Vq out/ Ig meas

Frequency (Hz)

=]
A&
T T
|

=
[=]
I

3]
=1
I

I ———— e

450

M g2
=
o0

180

=]
o0
T T T 11

|
|
+
|

©
- Q9
(=]

Frequency (Hz)

The host model uses these commands to plot the frequency responses observed for the three PI

controllers.

Frequency response of Id current PI controller:

sys hw id=frd(IdFreqData.signals.values,fre.i freq*2*pi);

bode(sys hw id);

4-157

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-158

Frequency response of Iq current PI controller:

sys hw ig=frd(IgFreqData.signals.values,fre.i freq*2*pi);
bode(sys hw iq);

Frequency response of speed PI controller:

sys _hw spd=frd(SpdFreqgData.signals.values,fre.spd freq*2*pi);
bode(sys hw spd);

For more information about these commands, see these files:

* mcb pmsm freq est plot.m

* mcb_pmsm_freq host est plot.m

Tuning PI Controller Gains

These steps show you how to tune and determine the gains for the Id and Iq currents and the speed
of the PI controllers:

1. Navigate to the Apps tab on the Simulink toolstrip and open the PID Tuner app.

20860 v - B

Design Get More Install Package Curve Fitting Optimization PID Tuner

App Apps App App
FILE

2. In the PID Tuner tab, select PI for Type, Parallel for Form, and Frequency for Domain.

PID TUMER VIEW

Plant: Type: PI ¥ Domain:

Plant ¥ Form: Parallel [Frequency ¥

4 Inspect @ Options & Add Plot¥
PLANT CONTROLLER DESIGN

3. Under Plant, select Import to open the Import Linear System window.

Frequency Response Estimation of PMSM Using Field-Oriented Control

Plant: Type: PI ¥ Domain:
|’Plantv‘| Form: Parallel
EXISTING PLANTS E Add Plotw
| & Plant DESIGN
CREATE A NEW PLANT |
Import

& Import a linear
plant from Workspace

Identify New Plant
Generate a linear
plant from input/output data 0.9

4. In the Import Linear System window, select sys_sim_id and click Import to import the FRE data
for the Id PI controller.

Impart Linear System x

Import a linear system from MATLAB workspace

Available Data Type Order
| sys_sim_id [frd Nal

sys_sim_ig frd RER

sys_sim_spd frd MNalM

Specify the number of unstable poles (except integrators) for the selected plant: ICI

@ Refresh Workspace view &, Import $§ Cancel l:?_;l Help

5. Select Add Plot > Bode > Open-loop to open the open-loop bode plot for the Id PI controller.

4-159

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Plant: Type: PI * Domain: K +—
0.1
Plant¥ Form:|Parallel ~
r——
A Inspect @ Options kd Add Plot v 0
PLANT CONTROLLER STEP
g ’I Step Plot: Reference trackil pjant
§ Open-loop
= .
E Reference tracking

Caontroller effort
Input disturbance rejection

Output disturbance rejection
BODE
Plant

Open-loop

Reference tracking
Controller effort
Input disturbance rejection

Qutput disturbance rejection

6. Use the Tuning Tools section in the PID Tuner tab to tune the bandwidth and phase margin and
observe the results in the open-loop and plant bode plots.

4-160

Frequency Response Estimation of PMSM Using Field-Oriented Control

4\ PID Tuner - Bede Plot: Open-loop — O X

FID TUNER VIEW
Plant: Type: PI * Domain: &« L E -

. 4543072 Bandwidth (r2ds) 454307196 4757 ¥ Cé) E Iﬁ
sys_sim_id ¥ Form: Parallel ~ Reset Show Bipart
Q Inspect @ Options E Add Plot > 0 Phase.IMargin deg) 20 m Design Parameters - _

PLANT CONTROLLER DESIGN TUNING TOOLS RESULTS | &
@ _J Bode Plot: Open-loop 1 | Bode Plot: Plant 2 |
5
&
g Bode Plot: Open-loop Bode Plot: Plant
| 40 : : 10 : . :
| Tuned response,sys_sim_id
20t o7 |
o o
&L et
g % 10 g
= O =
E E opl]
8 &
= 5t =
-30 r -
-40 : - - -40
-80 T 0 T T
90 1
.@ -180 §
=2 o -180 T .
@ =270 5}
o @ 270 - .
= =
& 360 1 &
=360 [1
-450 , - - -450 - , -
10' 10? 108 10* 10°® 10! 102 10% 10* 108
Frequency (rad/s) Frequency (rad/s)
Controller Parameters: Kp = 1.64, Ki = 2244

7. After you finish tuning, click Show Parameters to display the tuned controller parameters Kp and
Ki for the Id current PI controller.

4-161

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-162

]
Controller Parameters

Tuned
Kp 1.6405
Ki 2243.8215
kd n/a
TF n/a
Performance and Robustness
Tuned
Rise time MaM seconds
Settling time MNaM seconds
Overshoot MaM %
Peak Mal
Gain margin 4.21 dB @ 7.96e+03 rad/s
Phase margin 39.5 deg @ 4.77e+03 rad/s
Closed-loop stability Stable

8. Repeat steps 3 to 7 by selecting sys_sim_iq in the Import Linear System window to obtain the
tuned parameters Kp and Ki for the Iq PI controller.

9. Update the Kp and Ki gain values for both Id and Iq current PI controllers in the initialization
script of the example model mcb_pmsm_freq _est f28379d.s1x. For instructions, see “Estimate
Control Gains and Use Utility Functions” on page 3-2.

10. Perform the frequency response estimation again using the updated PI controller gains by either
simulating the example or running it on the target hardware.

11. Perform steps 3 to 7 by selecting sys_sim_spd in the Import Linear System window to obtain
the tuned parameters Kp and Ki for the speed PI controller.

See Also
* “PID Controller Tuning in Simulink” (Simulink Control Design)
Other Things to Try

You can try estimating the transfer functions and state-space models from the FRE data by using
these functions from the System Identification Toolbox™:

* ssest

e tfest

MATLAB Project for FOC of PMSM with Quadrature Encoder

MATLAB Project for FOC of PMSM with Quadrature Encoder

This MATLAB® project provides a motor control example model that uses field-oriented control
(FOC) to run a three-phase permanent magnet synchronous motor (PMSM) in different modes of
operation. Implementing the FOC algorithm needs real-time rotor position feedback. This example
uses a quadrature encoder sensor to measure the rotor position. For details about FOC, see “Field-
Oriented Control (FOC)” on page 4-3.

The example can run a motor in these modes:
* StandBy - In this mode, the motor stops running because the inverter outputs zero volts.

* Calibration - In this mode, the example calibrates the ADC (or current) offset and the quadrature
encoder offset (offset between the d-axis of the rotor and the encoder index pulse position as
detected by the quadrature encoder sensor).

* Open Loop Speed Control - In this mode, the example controls the rotor speed by running the
motor in the open-loop control.

* Closed Loop Torque Control - In this mode, the example controls the torque output of the motor
by running it in the closed-loop control.

* Closed Loop Speed Control - In this mode, the example controls the rotor speed by running the
motor in the closed-loop control.

Note: When running the example model on the hardware, we recommend that you stop the motor (by
switching to the StandBy mode) before transitioning from one operating mode to another.

Open MATLAB Project

Use one of these methods to open the MATLAB project to follow this workflow:
1. Click Open Example.

2. Run the command mcb_QEPWorkflowDemoStart at the command prompt.
Model

The MATLAB project includes the model mcb _gep workflow.

This model (also called target model) automatically opens when you open the MATLAB project. You
can also use the Project window to open this model available in the model folder.

4-163

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Workflow for FOC of PMSM with QEP sensor

HW Prerequisites Simulation Dashboard

1. TI F28379D LaunchPad

2. BOOSTXL-DRV8305 Booster pack
or BOOSTXL-3PhGaMinv Stop

3.PMSM motor with QEP sensor

Steps: StandBy

Start

Motor

Operafing Modes

1. Edit motor & inverter parameters Calibration
and run the script to update the Open Loop Speed Contrel
Simulink Data Dictionary file. Closed Loop Torque Control

2. Simulate the model to see motor
operation in different modes
3. Click Build, Deploy & Start in
Hardware tab
. Control motor via host model
5. Learn more about this example

I

#®) Closed Loop Speed Control

Reference Speed [RPM]

Reference Torgue [Nm]

Load Torque [Nm]

Rotor Lock

1000

0.01

0.01

Measured Speed
[RPM]

Measured Torque
[Nm]

On

Note:

Reference Speed [RPM] input is
active in both Open Loop Speed
Control and Closed Loop Speed
Control modes.

Reference Torgue [Nm] input is active
only in Closed Loop Torgue Control
mode.

r

Processor

PWNM duty cycles

Embedded Processor

Mode

Plant feedback signals

A 4

Inverter and Motor

Copyright 2020 The MathWorks, Inc.

Required MathWorks® Products

To simulate model:
* Motor Control Blockset™

o Stateflow®

To generate code and deploy model:

1. Motor Control Blockset™

2. Embedded Coder®

3. Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

4. Fixed-Point Designer™ (only needed for optimized code generation)

5. Stateflow®

Prerequisites

1. Obtain the motor and inverter parameters. The MATLAB project uses default motor and inverter
parameters that you can replace with values from either the motor and inverter datasheets or from

other sources.

4-164

MATLAB Project for FOC of PMSM with Quadrature Encoder

* You can estimate the parameters for the motor that you want to use with the motor control
hardware, by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. Update the motor and inverter parameters in the mcb _gep data.m parameter script associated
with the MATLAB project. This script automatically opens when you open the MATLAB project. You
can also use the Project window to open this script from the utils folder.

3. Click Run on the Editor tab to run the parameter script and update the script parameters in the
data dictionary. The data dictionary file (pmsm_gep data.sldd) is available inside the data folder in
the Project window.

Note: When you simulate the target model or run it on the hardware, if you change any parameter
value in the parameter script, you must run the parameter script to update the data dictionary.

Simulate Model
Follow these steps to simulate the target model.
1. Open the target model included in the MATLAB project.

2. Turn the Stop-Start slider switch available in the Simulation Dashboard area to the Start
position to allow the model to simulate and run the motor.

During simulation, you can turn the switch to the Stop position anytime to immediately stop the
motor.

3. Click Run on the Simulation tab to simulate the model.
Open Loop Speed Control mode

1. Select Open Loop Speed Control in the Simulation Dashboard > Operating Modes area of
the target model.

2. Enter the values in the Reference Speed [RPM] and Load Torque [Nm] fields.

Note: In the open-loop mode, the motor runs only if the load torque value is either zero or a very
small value. If you use a high load torque value, the motor can stop.

Closed Loop Torque Control mode

1. Select Closed Loop Torque Control in the Simulation Dashboard > Operating Modes area of
the target model.

2. Enter the reference torque value in the Reference Torque [Nm] field.
3. You can simulate the locked rotor situation by moving the Rotor Lock slider switch to On position.
When you move the switch to Off position, the rotor rotates freely within a maximum speed limit that

is defined by the variable data.pmsm.wLimit TorqueMode in the mcb gep data.m parameter
script.

4-165

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-166

Note: The Rotor Lock slider switch is applicable only when performing simulation in this operating
mode. It has no effect during the other modes.

Closed Loop Speed Control mode

1. Select Closed Loop Speed Control in the Simulation Dashboard > Operating Modes area of
the target model.

2. Enter the values in the Reference Speed [RPM] and Load Torque [Nm] fields.
NOTE:

* In the closed-loop mode, the motor runs only if the load torque value is less than or equal to the
rated torque of the motor. If you use a higher load torque, the motor starts running in the opposite
direction.

* When you simulate the target model, the calibration operating mode produces an invalid
simulation output because this mode is designed to calibrate the hardware setup.

When simulating this example, you can observe the measured speed and torque values in the
Measured Torque [Nm] and Measured Speed [RPM] fields in the Simulation Dashboard area.

Generate Code and Deploy Model to Target Hardware
This section shows you how to generate code and run the FOC algorithm on the target hardware.

In addition to the target model, the MATLAB project uses a host model. The host model, which is a
user interface to the controller hardware board, runs on the host computer. To use the host model,
first deploy the target model to the controller hardware board. The host model uses serial
communication to command the model, run (and control) the motor in the selected operating mode,
and collect and display the calibration output, and debug signals from the controller.

Required Hardware
The example supports this hardware configuration.
* LAUNCHXL-F28379D controller + (BOOSTXL-DRV8305 or BOOSTXL-3PHGANINV) inverter

You can select one of these inverters by setting the mcb_SetInverterParameters argument in the
parameter script file (ncb_qgep_data.m) to one of these values:

e BoostXL-DRV8305
 BOOSTXL-3PhGaNInv

For connections related to this hardware configuration, see “LAUNCHXL-F28069M and LAUNCHXL-
F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

MATLAB Project for FOC of PMSM with Quadrature Encoder

4. To ensure that CPU2 is not configured to use the board peripherals intended for CPU1, load a
sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the CPU2 blue
LED by using GPIO31 (c28379D cpu2 blink.slx).

5. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

6. Click the host model hyperlink in the target model to open the associated host model.

PMSM FOC Speed Control Host

Prerequisites: Control Dashboard Operating Modes Calibration Output
1. Deploy the target model to ®) StandBy

the hardware mcb_gep workflow .
Calibration

SteES: Stop Start Open Loop Speed Control
. Select the port name in Serial 1 Closed Loop Speed Control Position Offset [PU Position]
tab of Host Serial Setup. Motor Closed Loop Torgque Control
Simulate this model

Use Start / Stop Motor switch -
to control the motor.

. Use open loop mode to validate Closed Loop Torque Control ‘

w

Current Sensor A Offset [counts]

(=

hardware setup.
. Use Calibration mode to calibrate Reference Torque [Nm] 0.01
current offset and position offset.

Update these values in paremter file _ _ Current Sensor B Offset [counts]
and run parameter file. Speed Control ‘

F-Y

o

@

Proceed to Closed Loop Speed
Control mode or torque control mode
(works best with loaded motor shaft)

Reference Speed [RPM] 800

Scope signals

#®) Control_ref & Speed_feedback
Id Control

Note: Ig Contral

Reference Speed [RPM] input is active la&lb

in both Open Loop Speed Control and HOST Signal 1 > [:] Torgue & Power

Closed Loop Speed Cor_ltrcl n?cdesl. Serial |a & Position
Reference Torque [Nm] input is active Setup _
only in Closed Loop Torque Contral Signal 2
mode. . : — -
'Control_ref scope signal plots Host Serial Setup Serial Communication SelectedSignals

Reference speed during speed control All signals are in Per-Unit
modes and Reference torque during

torque control mode. Copyright 2020 The MathWorks, Inc.

!
>

7. Turn the Stop-Start slider switch in the Control Dashboard area to the Start position to allow
the model to run the motor.

When running the motor using the target hardware, turn the switch to the Stop position anytime to
immediately stop the motor.

8. In the Host Serial Setup block mask of the host model, select a Port name.

9. Click Run on the Simulation tab to run the host model.

Note: Always stop the motor (by using the StandBy mode) before changing the operating mode.
Instructions for Calibration mode

1. Select StandBy in the Control Dashboard > Operating Modes area of the host model to stop
the motor.

2. Select Calibration in the Control Dashboard > Operating Modes area of the host model.

The controller runs the motor and performs ADC (or current) offset and quadrature encoder offset
calibration and updates these offset parameters in the data dictionary file (pmsm_qgep data.sldd):

4-167

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-168

* pmsm.PositionOffset
* inverter.CtSensAOffset

 inverter.CtSensBOffset

The host model also displays the offset values in these fields available in the Calibration Output
area:

* Position Offset
¢ Current Sensor Offset A
¢ Current Offset B

3. Update these offset parameters in the parameter script file (ncb _qep data.m) before you run the
parameter script:

* data.pmsm.PositionOffset
 data.inverter.CtSensAOffset

« data.inverter.CtSensBOffset

Note: Update the parameter script immediately to avoid losing these offset values. MATLAB project
rewrites the data dictionary (with the existing parameter script values) every time you run the
parameter script.

For details about these parameters, see “Estimate Control Gains and Use Utility Functions” on page
3-2.

4, After the calibration completes, the offset parameters are erased if you reset the target hardware.
Click Build, Deploy & Start on the Hardware tab to program the target hardware with the
calibrated offset parameters.

Instructions for Open Loop Speed Control mode

1. Select StandBy in the Control Dashboard > Operating Modes area of the host model to stop
the motor.

2. Select Open Loop Speed Control in the Control Dashboard > Operating Modes area of the
host model.

The controller runs the motor in the open-loop control.

3. You can change the default reference speed value by using the Reference Speed [RPM] in the
Control Dashboard > Speed Control area of the host model.

Note:

* Be cautious when providing a reference speed. The motor may not run optimally at all speeds. We
recommend that you use a low speed initially and increase it gradually.

* In the open-loop mode, the motor runs only if the load is either zero or negligible. If you use a
higher load, the motor stops running.

MATLAB Project for FOC of PMSM with Quadrature Encoder

* You do not need to calibrate the ADC (or current) and quadrature encoder sensor when you run
the motor in open-loop control.

Instructions for Closed Loop Speed Control mode

1. Run the motor in the open-loop configuration to validate the hardware setup. Follow the steps
described in the Instructions for Open Loop Speed Control mode section.

2. Perform ADC (or current) offset and quadrature encoder offset calibration. Follow the steps
described in the Instructions for Calibration mode section.

3. Select StandBy in the Control Dashboard > Operating Modes area of the host model to stop
the motor.

4. Select Closed Loop Speed Control in the Control Dashboard > Operating Modes area of the
host model.

The controller runs the motor in the closed-loop control and controls the rotor speed.

5. You can change the default reference speed value by using the Reference Speed [RPM] in the
Control Dashboard > Speed Control area of the host model.

Note: In the closed-loop mode, the motor runs only if the load torque is less than or equal to the
rated load of the motor. If you use a higher load torque, the motor stops running.

Instructions for Closed Loop Torque Control mode

1. Run the motor in the open-loop configuration to validate the hardware setup. Follow the steps
described in the Instructions for Open Loop Speed Control mode section.

2. Perform the ADC (or current) offset and quadrature encoder offset calibration if you have not done
so earlier. Follow the steps described in the Instructions for Calibration mode section.

3. Select StandBy in the Control Dashboard > Operating Modes area of the host model to stop
the motor.

4. Select Closed Loop Torque Control in the Control Dashboard > Operating Modes area of the
host model.

The controller runs the motor in the closed-loop configuration and controls the torque of the motor.

5. You can change the default reference torque value by using the Reference Torque [Nm] in the
Control Dashboard > Speed Control area of the host model.

You can configure the maximum speed limit of the motor in the closed loop torque control mode using
the variable data.pmsm.wLimit TorqueMode in the mcb gep data.m parameter script.

When running the motor using the target hardware in these operating modes, you can select the

debug signals (in the Scope signals area) that you want to monitor in the SelectedSignals time
scope.

4-169

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Estimate Initial Rotor Position Using Pulsating High-Frequency
and Dual-Pulse Methods

4-170

This example determines the initial rotor position (in electrical radians) of a stationary interior
PMSM. The example uses the pulsating high-frequency (PHF) method, which works when the motor

has a high saliency ratio {L&r > L]' The estimated rotor position ranges from 0 to 2m electrical
radians. Due to a limitation in the PHF method, the estimated position may show ambiguity of i (pi).
The dual-pulse (DP) method uses polarity detection to resolve the ambiguity of m and applies &t
compensation if there is an error.

The example supports both floating point and fixed point data-types.
Part A: Pulsating High-Frequency Method

Motor control techniques like “Field-Oriented Control (FOC)” on page 4-3 need real-time position
feedback from the running motor to track the rotor angle accurately. An FOC algorithm uses the real-
time rotor position along with the current feedback to compute the reference voltages and duty
cycles that drive the motor. Therefore, it is essential to accurately track the rotor position to compute
the right reference voltages to run the motor at a specific speed using an efficient torque value.
Sensors like quadrature encoders and Hall effect sensors can provide real-time rotor position data to
implement position tracking in FOC applications. However, these sensors might have mechanical
constraints (for example, a complex sensor installation process) and can be expensive. In addition,
when using some of these sensors, it is difficult to determine the initial position of the rotor.

Whereas, sensorless techniques are cost effective and can provide more accurate position tracking
without any mechanical constraint. This example uses the PHF method to determine the initial rotor
position. The example algorithm injects a sinusoidal high-frequency voltage along the d-axis
(resulting in unbalanced three-phase voltage in the motor) and reads the current response from the
motor. The algorithm performs numerical analysis of the resulting stator current response to compute
the initial position of the stationary rotor (in electrical radians).

The example algorithm performs iterative tests on the motor. Therefore, when you start simulation,
the estimated position shows as zero but rises steadily to saturate at the estimated rotor-angle (with
respect to a-axis).

The PHF method has a limitation due to which it might compute rotor position with an ambiguity of m.
— T 3T P

If the rotor lies in the range Bactual = [ﬂ' 2) U (2 2“] electrical radians (region 1), the

estimated position is accurate (1 compensation is not required).

Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods

Region 1
0 actual =
030 (F2n

electrical radians

Stator

Single pole-pair

interior PMSM Actual rotor position

Region 1

—» Estimated position
when rotor lies in
| region 1

— (z 3=
If the rotor lies in the range ‘q“‘-'-'*”“f _ (2r 2) electrical radians (region 2), the estimated position

shows an ambiguity of i1 (1 compensation is required).

4-171

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-172

Region 2

Oactual =
iy Single pole-pair

interior PMSM

\ eEst = e::lctual Rl

Phase-a axis

Actual rotor position

Region 2

—» Estimated position
when rotor lies in

region 2

Therefore, the example uses the dual-pulse method to determine if the estimated position needs
compensation.

Note: You can use these variables in the model initialization script
mcb_ipmsm pos est f28379d data.m to customize the PHF signal:

* PHF.Frequency — Frequency of PHF signal

* PHF.Amplitude — Amplitude (in per-unit) of PHF signal

* PHF.PHF Duration — Execution time of the PHF algorithm
Part B: Dual-Pulse Method

The example algorithm injects two very short duration voltage pulses (with the same width and
magnitude) into the d-axis of the rotor with respect to the magnetic north of the rotor:

* Pulse-1 that uses the rotor position estimated in Part A

Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods

Pulse-2 that uses the rotor position estimated in Part A + nn

Because pulse width is very short, the motor does not run and the rotor remains stationary after
pulse injection. The interaction between the resulting stator magnetic flux and the rotor permanent
magnets result in two current impulses along the d-axis of the rotor that rise and fall quickly.

Because the stator core is saturated, it shows a nonlinear behavior. A small L results in higher

current In’, and a high L results in smaller current 1d. Therefore the 1d current impulses generated
by Pulse-1 and Pulse-2 show different peak values.

d-axis voltage
(Va)

d-axis current
(14)

est

ensl = 9alcllual
(m compensation is not needed)

Delay A

Stator core demagnetizes

Stator core magnetizes

t
Iz |
Y
Lar < Laz d-axis inductance = L,

[la1] = gzl

Alg = ([Ig1] = llgz]) > 0

4-173

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

d-axis voltage

d-axis current

4-174

(Va)

(1a)

eeﬂ = Bactual n
(t compensation is needed)

Stator core demagnetizes

FY
! Stator core magnetizes

b

d-axis inductance = Ly
Lay = Laz

a1l < gzl

Alg = (ga| — gz]) <0

The example algorithm computes the difference between the peak values of the two current impulses

Alj to determine if the position estimated in Part A needs m compensation.
-&In' = |Ir.f| | - |In"_?|

Note:

. T ar

This example does not support position estimation when Oactual is approximately equal to 2 or 2

’

which are the boundary points beltween region lland region 2 (when B actual lies in the range
[(5—0.1), (5 +0.)] [(§ —0.1), (5 +0.1)},

* When you deploy and run the example on the target hardware connected to a motor that has very
L
Ly
low saliency (L ratio is very low), this example does not support position estimation for Bactuat

falling in the range [(m—0.3),(m +0.3)]

* You can use these variables in the model initialization script
mcb _ipmsm pos est f28379d data.m to customize the DP signals:

* DP.PulseAmp — Amplitude (in per-unit) of the pulses

* DP.Duration width — Width of the pulses

Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods

* DP.Duration_delay — Delay between the two pulses
Model
The example includes the target model mcb ipmsm pos est £28379d.

You can simulate this model or run it on the hardware. Use the open system command to open the
model.

open_system('mcb ipmsm pos est f28379d.slx');

Estimation of Initial Rotor Angle (zero speed)
Interior Permanent Magnet Synchronous Motor

HW Prerequisites f
1. TI F8279D LaunchPad Simulation Input & Qutput

2. BOOSTXL-DRVS305 Booster pack
3. IPMSM motor

Steps:
;- Fﬁ”t ”"ﬁt':'f & ‘”‘T‘“Ef_ PalemT'E{fE P Input electrical rotor position Estimated electrical rotor position
. Input the rotor electrical angle (radians radians radians
in the edit box “Input electrical rotor () ()
position”

3. Simulate the model and observe the
estimated rotor angle in display box
"Estimated electrical rotor position”™

4, Click Build, Deploy & Start in the
Hardware tab.

5. Start or stop algorithm via host model

6. Learn more about this example » Processor S »
- Duty cycles

Global Variables

la0ffaet | | IbOffset Embedded System Inverter and Motor

Samulation feedback

Copyright 2021 The MathWorks, Inc.

Required MathWorks® Products

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder Support Package for Texas Instruments C2000™ Processors
» Simscape™ Electrical™ (only for simulation)

Prerequisites

1. Determine the motor parameters. The target model uses default parameters that you can replace
with values from either the motor datasheet or other sources.

4-175

4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

M |d

However, if you have motor control hardware, you can estimate the parameters for your motor by
using the Motor Control Blockset parameter estimation tool. For instructions, see “Estimate PMSM
Parameters Using Recommended Hardware” on page 4-189. The parameter estimation tool updates
the motorParam variable (in the MATLAB® workspace) with the estimated motor parameters.

2. Update the motor and inverter parameters in the model initialization script associated with the
target model. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

Simulate Model

Follow the instructions in the Simulate Nonlinear Stator Core Behavior section to introduce high
saliency in the motor block. Then follow these steps to simulate the target model.

1. Open the target model included in this example.

2. Enter the initial rotor position value (that the Interior PMSM block should use for simulation) in
the Input electrical rotor position (radians) field available in the Simulation Input & Output
area of the target model.

3. Click Run on the Simulation tab to simulate the target model. The model estimates the rotor
position using the PHF method. Then it uses the DP method to determine if the estimated rotor
position needs m compensation. The target model applies m compensation if needed.

It then displays the estimated rotor position in the Estimated electrical rotor position (radians)
field.

4. Observe the logged signals in the Simulation Data Inspector.

This plot shows the current along the d-axis {‘r ff]' during simulation.

4-176

T T

198 199 200 201 202 203 204 205 206 207 208 209

This plot shows the estimated rotor position when the target model does not apply m compensation

= Hr s T ?T}

(Binit = Oest } and when the target model applies m compensation (Binit

Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods

MW Theta_act M Theta_est (without pi-compensation)

0 02 04 06 038 10 12 14 16 18 20

M Theta_act M Theta_est (with pi-compensation)

0 02 04 0.6 0.8 1.0 12 14 16 18 20

5. The Estimated Rotor Position (Electrical Radians) display block in the QOutput area of the
target model shows the initial rotor position estimated by the target model.

Generate Code and Deploy Model to Target Hardware
Follow the instructions in this section to generate code and run the example on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. Before you can run the host model
on the host computer, deploy the target model to the controller hardware board. The host model uses
serial communication to command the target Simulink® model and run the motor in closed-loop
control.

Required Hardware

The example supports this hardware configuration. You can also use the target model name to open
the model from the MATLAB® command prompt.

LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter + iPMSM (such as Adlee BM-180):
mcb ipmsm pos est f28379d

For connections related to this hardware configuration, see “LAUNCHXL-F28069M and LAUNCHXL-
F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware

1. Simulate the target model and observe the simulation results.

4-177

https://www.adlee.com/en/product-552437/Brushless-DC-Motor-and-Drive.html

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

2. Complete the hardware connections.

3. By default, the model computes the ADC offset values for phase current measurement. To disable
this functionality, update the value of the inverter.ADCOffsetCalibEnable variable in the model
initialization script to 0.

Alternatively, you can compute the ADC offset values and update them manually in the model
initialization script. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and Calibrate
ADC Offset” on page 4-10.

4. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

5. Load a sample program to CPU2 of the LAUNCHXL-F28379D board. For example, load the
program that operates the CPU2 blue LED by using GPIO31 (c28379D cpu2_ blink.slx). This
ensures that CPU2 is not mistakenly configured to use the board peripherals intended for CPU1.

6. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
Verify the variables that the target model adds to the workspace.

7. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model.

open_system('mcb ipmsm pos est f28379d host model.slx');

Estimation of Initial Rotor Angle (zero speed) Control Host
Interior Permanent Magnet Synchronous Motor

Prerequisites:
1. Deploy the target model to the hardware

mech_ipmsm_pos_est f28379d
2. Verify the variables from the target model in Stop Start
the base workspace.

Steps: Estimate position Estimated rotor electrical position
. Select the serial port in 'Host Serial Setup’ (radians)
. Simulate this model
. Use Estimate position switch to start the
Initial rotor position estimation algorithm.

L B2 =

4. Observe Measured position in Electrical
radians al the display box "Estimated rotor HOST theta_est »
electrical position” Serial d .

5. To estimate a different rotor position, turn Selup
the Estimate Position switch to Stop, Ig g
change the motor shaft position, and then Host Serial Setup Serial Communication scope

restart the algorithm.

Copyright 2021 The MathWorks, Inc.

For details on serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

8. In the dialog box of the Host Serial Setup block in the host model, select a port name in the Port
name parameter.

4-178

Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods

9. Click Run on the Simulation tab to run the host model.
10 Change the position of the Estimate Position switch to Start to start running the example
algorithm. The target model estimates the rotor position using PHF method. Then it uses the DP

method to determine if the estimated rotor position needs m compensation. The target model applies
11 compensation if needed.

The host model obtains the estimated rotor position from the target hardware and displays it in the
Estimated rotor electrical position (radians) field.

11 To estimate a different rotor position, change the position of the Estimate Position switch to
Stop. The Estimated rotor electrical position (radians) field displays the value 0.

Turn the motor shaft to a new position. Then change the position of the Estimate Position switch to
Start to run the example algorithm again and estimate the new position.

12 Observe the estimated position, Id, and Iq signals in the time scope available in the host model.

This plot shows the estimated rotor electrical position (9,-“ it) and the stator currents (Id) and (Iq).

Theta_est

@

&

N

ThetaEst (Electrical radians)
o

2000 4000 6000 8000 10000 12000
Time (ms)

1d (&)

=

-20

15

0.5

la (A)

0.8

2000 4000 6000 8000 10000 12000
Time (ms)

-1.5

Offset=0

2000 4000 6000 8000 10000 12000
Time (ms)

Simulate Nonlinear Stator Core Behavior

The DP method algorithm works only when the stator core saturates and shows a nonlinear behavior.
To generate this behavior in simulation, the target model uses the PMSM (Simscape Electrical) block

from Simscape™ Electrical™. Follow this procedure to experimentally determine the tabulated Ld,

Lff, and Iy data for the actual motor and use this data to make the motor block nonlinear for
simulation purposes.

Determine L Data

4-179

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-180

1. Create a target model to run a PMSM using open-loop control. Modify the algorithm so that it
injects the voltages Vi = Vae sin(wt) + Vi ang Vo = 0 into the actual motor. This generates the

current Jd = Tae sin(wt + &) + L i the motor where:
Vi is the voltage that the algorithm computes and injects along the rotor's d-axis

Vae sin(wt) is the AC component of Vi (such that Ve and o are constants that the algorithm
should assume)

Vi is the DC component of Vi that you provide as an input

I is the current along the d-axis of the rotor that the algorithm computes from the measured I,
and 1b phase currents

Joe sin(wt + @) s the AC component of 1d (¢ is the phase difference between Vi and {d that the
algorithm should measure)

I is the DC component of Iu’, which is fixed for a Vile input (the algorithm should compute this
value by using Vi and the motor resistance)

Note: Because I"ff =1 q = ”, the rotor remains stationary.
a. Add an algorithm to read the Iy and I phase currents that the motor draws.

b. Add an algorithm to convert the o and Iy phase current values into the equivalent L value by
using Clarke and Park transforms.

c. Add an algorithm to compute ¢ and Tge,

d. Add an algorithm to compute Toe.

T = I:F Id'
“ \ sin(wt + ¢)

e. Add an algorithm to compute La.

Ly = Wy (for a fixed fr!r)

For details about designing a control algorithm and configuring it for deployment to the target
hardware, see “Control Algorithm Design” and “Deployment and Validation”.

2. Create a model initialization script (. m file) to initializate the paramters and perform other
calculations. Use the Model Properties > Callbacks to integrate this script with the target model.
For details about how Motor Control Blockset™ uses this script, see “Estimate Control Gains and Use
Utility Functions” on page 3-2.

Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods

3. Configure the target model to run on the target hardware. For instructions, see “Model
Configuration Parameters” on page 2-2.

4. Create a separate host model to control and communicate with the target model running on the
motor-control hardware in real-time. You can add an Edit box on the host model and use it to send
Ve input to the target hardware. Use Display boxes to obtain the computed L and Lac values from
the target hardware.

For details about the host-target communication interface, see “Host-Target Communication” on page
6-2.

5. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

6. Simulate the host model. Send a Vile input to the target hardware and record the L and e
values that you obtain.

7. Change Vite manually across a range between a negative and positive voltage and record the
resulting Lqg and Tie values for each operating point.

: /‘Gc Vy = V. sin(wt) + Vg, v, =0
|
I

|
Voltage injected e e NN
Va .V,

- ——

time

Measured current

1,1,

L

Determine -7 Value

L

from the Determine Ld section. This is necessary to maintain a high saliency ratio (Lff > Lﬂ’) for the
simulated motor block.

Perform these steps to determine a -~# value that is higher than the sequence of L values obtained

4-181

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

1. Modify the target model that you used in the Determine Ld section so that it injects the voltages
ro_ 1 F — T einlis
Va = Viae and Vo = Vae SIn(w1) ini6 the actual motor, This generates a current

I, = I sin(wt + @)

in the motor where:

Vi = Viie is the DC voltage (corresponding to Iy = Iy = ﬂ) that the algorithm injects along
the d axis of the rotor

'S — -'"- a1 fal) . . o . .
I’fr = Voc hm{“'t} is the AC voltage that the algorithm computes and injects along the g-axis of

the rotor. (such that Ve and o are constants that the algorithm assumed in the Determine Ld
section)

Iy = Toe sim(wt + @) is the AC current along the g-axis of the rotor that the algorithm

computes from the measured Iy and I phase currents (¢ is the phase difference between Lff and LI
that the algorithm should measure)

Note: Because ld = n, the rotor remains stationary.

Vd = Vdc l{} = Vac Sin(wt)
Voltage injected v ¢
Vg ,VE} T/ ac i Ve
| |
¥ x
time
I; =1, 1, = I, sin(wt + @)
Measured current 4
Iq 14 /‘P<IM TN i fac
X

_/ \—/ time

a. Update the existing algorithm to convert the I and 1» phase current values into the equivalent LI
value by using Clarke and Park transforms.

b. Update the existing algorithm to compute ¢.

4-182

Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods

c. Update the existing algorithm to compute I,

I,
L (siu{g;?‘. + r_,tr})

d. Add an algorithm to compute Lff.

er = -.A-‘f..-. (for I”l —_ Jr“'r. = ”)

2. Update the model initialization script to perform the preceding modified calculations.

3. Update the host model to obtain and display the Lfi value computed by the target hardware.

4, Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
5. Simulate the host model. Send a Ve input (corresponding to Iy = Iy = ”) to the target
hardware and record the Lﬂf value that you obtain.

Design High Saliency Motor Block

Sections Determine Ld Data and Determine Lq Value provide the following data:
Sequence of Ly values
Sequence of L. (I,; for a DC current) values

Constant Lﬂ! value

In addition, we can assume a set of Iff values that we can use to add high saliency to the motor block.

Use the variables pmsm.nonlin.idVec, pmsm.nonlin.Ld data, pmsm.nonlin.iqVec, and
pmsm.nonlin.Lq data to store this data in the model initialization script

mcb _ipmsm pos est f28379d data.m associated with the example target model

mcb _ipmsm pos est f28379d.slx.

Note: This script is different from the model initialization script used in sections Determine Ld Data
and Determine Lq Value.

In addition, define the variables pmsm.nonlin.LdMatrix, pmsm.nonlin.LgMatrix, and
pmsm.nonlin.PmMatrix.

4-183

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

% Ld vs Id data computed through experiment mention in documentation
% Stator current in d-axis

pmsm.nonlin.idvec = [-18.385 -12.62 -1@.1@5 -6.3@% -3.735 -1.475 1.57 3.925 6.505 10.44 13.84 14.3225]; ®A
¥ Stator d-axis inductance
pmsm.nonlin.ld_data = [1.77E-24 1.76E-24 1.76E-04 1.75E-94 1.76E-94 2.63E-24 2.59E-84 1.76E-04 1.73E-04 1.72E-64 1.70E-64 1.60E-84]; ¥H

% Stator current in g-axis

pmsm.nonlin.igVec = linspace(-13,13,28); kA
% Q-axis inductance value at low currents
pmsm.nonlin.lg_dsta = 2.38E-04; %H

% Here Ld has been considered to be dependent only Id
pmsm.nonlin.LdMatrix = pmsm.nonlin.ld_data'®ones(1,20); %H

% Here Lg has been considered to be independent of Id, Ig

% Here low current Lq value has been chosen because Ld<Lq has to be
% satisfied for all Id, Ig

pmsm.nonlin.LgMatrix = pmsm.nonlin.Llq_date*ones(12,2@); =*H

% Here PM flux has been considered to be independent of Id, Ig
pmsm.nonlin.PmMatrix = pmsm.FluxPM * ones(12,28);

In the PMSM (Simscape Electrical) block parameter dialog box, set the Modeling fidelity parameter
to Tabulated Ld, Lqg and PM and add these variables as shown in the following figure.

4-184

Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods

Block Parameters: PMSM be

Permanent Magnet Synchronous Machine

This block represents a permanent magnet synchronous machine with sinusoidal flux distribution.
Right-click on the block and select Simscape block choices to access variant implementations of this block.

Select a predefined parameterization
Source code

Settings

Main Iron Losses Mechanical Variables

Electrical connection: Composite three-phase ports -
Winding type: Delta-wound -
Modeling fidelity: Tabulated Ld, Lg, and PM -
MNumber of pole pairs: |pm5m.p

Cemarert ek 05 sty ke ,
Stator parameterization: Specify Ld, Lg, and LO -
Direct-axis current vector, iD: pmsm.nonlin.idvec A w
%L:adrature—axiﬁ current vector, |pm5m.nnn|in.|'qvec | | A v|
Ld matrix, Ld(id,iq): |pm5m.nnn|in.LdMatri:-{ | | H v|
Lg matrix, Lg(id,iq): |pm5m.nnn|in.LqMatri:-{ | | H v|
i;?:f:ﬁ?t B e | pmsm.nonlin.PmMatrix | | Wb ~ |

The variables pmsm.nonlin.idVec, pmsm.nonlin.Ld data, pmsm.nonlin.igVec, and
pmsm.nonlin.Lq data help saturate the stator core and introduce a nonlinear behavior during

simulation. This enables the algorithm of the DP method to generate the 1 current impulses
(corresponding to Pulse-1 and Pulse-2) with different peaks.
References

[1] W. Zine, L. Idkhajine, E. Monmasson, Z. Makni, P. Chauvenet, B. Condamin, and A. Bruyere,
"Optimisation of HF signal injection parameters for EV applications based on sensorless IPMSM
drives", IET Electric Power Applications, Volume 12, Issue 3, March 2018, p. 347 - 356 (doi:10.1049/
iet-epa.2017.0228).

4-185

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

[2] Gaolin Wang, Guogiang Zhang, and Dianguo Xu, "Position Sensorless Control Techniques for
Permanent Magnet Synchronous Machine Drives", Springer, Singapore, 2020 p. 41 - 43 (doi: https://
doi.org/10.1007/978-981-15-0050-3).

4-186

https://doi.org/10.1007/978-981-15-0050-3
https://doi.org/10.1007/978-981-15-0050-3

Algorithm-Export Workflows for Custom Hardware

Algorithm-Export Workflows for Custom Hardware

This example enables you to use any custom motor-control hardware (hardware not used in the Motor
Control Blockset™ examples) to run a three-phase permanent magnet synchronous motor (PMSM)
using field-oriented control (FOC). Using the algorithm export workflows, which involve generating
code for the control algorithm by using Simulink® and Embedded Coder® and then integrating it
with either manually written or externally generated hardware driver code. This example explains the
algorithm export workflows along with the intermediate steps.

The example uses the following hardware as a reference, but you can use any motor-control
hardware:

* Controller: STMicroelectronics® STM32F302R8

* Inverter: STMicroelectronics® X-NUCLEO-IHM07M1

* Motor: BLY171D (includes quadrature encoder sensor)

You can use this example to customize the control algorithm and integrate it with the drivers for your
motor-control hardware. In this example, we use the STM32 Cube MX software to configure and
generate code for the hardware drivers. This example supports any three-phase PMSM.
Implementing the FOC algorithm needs real-time rotor position feedback. This example uses a
quadrature encoder sensor to measure the rotor position. For details about FOC, see “Field-Oriented
Control (FOC)” on page 4-3.

The example includes three workflows.

1. Open-loop control and ADC offset calibration — This workflow uses an algorithm that runs a
PMSM using open-loop control (also known as scalar control or Volts/Hz control). You can use this
workflow to check the integrity of the hardware connections and calculate the ADC offsets for the
current sensors available on the hardware.

2. Quadrature encoder offset calibration — This workflow uses an algorithm that calculates the
offset between the d-axis of the rotor and the index pulse position as detected by the quadrature
encoder sensor. The control algorithm (available in the field-oriented control workflow) needs this

offset to accurately compute the rotor position, which is necessary to implement FOC.

3. Field-oriented control — This workflow uses an algorithm that runs a PMSM using closed-loop
field-oriented control (FOC). The workflow uses the ADC and quadrature sensor offsets as inputs.

Each workflow includes these steps to prepare, deploy, and run the algorithm on your hardware:
1. Generate code for the control algorithm using Embedded Coder®

2. Obtain C Code For Hardware Drivers

3. Integrate control algorithm code with the driver code

4. Deploy the integrated code to hardware

5. Control the motor using a host Simulink® model.

4-187

https://www.st.com/en/development-tools/stm32cubemx.html

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-188

Open MATLAB Project

Use one of these methods to open the MATLAB® project:

* Click Open Example.

* Run the command mcb FOCAlgorithmExportDemoStart at the command prompt.

The project contains three folders, one for each workflow required to run the final FOC algorithm.
Each folder contains these contents:

* Data script containing motor, inverter, and target hardware details.

* Algorithm model for generating code for the control algorithm. The generated code will be
available in the folder [project root]/work/code.

* Host model for communication with the target hardware.

* C code which shows how to integrate the generated algorithm code and the hardware driver code
(specific to STM32F302R8 & X-NUCLEO-IHMO07M1).

In addition to the three folders, the project also includes an . I0C file. You can use this file with
STM32 Cube MX to configure the peripherals of the target and generate code. The . I0C file available
in the project is specific to the STM32F302R8 and X-NUCLEO-IHM07M1 hardware.

Workflows for Custom Hardware

Follow these workflows in sequence.

1. “Open-Loop Control and ADC Offset Calibration” on page 8-2
2. “Quadrature Encoder Offset Calibration” on page 8-11

3. “Field-Oriented Control” on page 8-18

Estimate PMSM Parameters Using Recommended Hardware

Estimate PMSM Parameters Using Recommended Hardware

This example determines the parameters of a permanent magnet synchronous motor (PMSM) using
the recommended Texas Instruments™ hardware. The tool determines these parameters:

Phase resistance, s EH (Ohm)

L‘q (

d and q axis inductances, Lr? and Henry)

Back-EMF constant, Kf' (Vpk LL/krpm, where Vpk LL is the peak voltage line-to-line
measurement)

Motor inertia, afl (Kg.m™2)

Friction constant, B (N.m.s)

The example accepts the minimum required inputs, runs tests on the target hardware, and displays
the estimated parameters.

NOTE: This example does not support simulation. Use one of the supported hardware configurations
to run this example.

Prerequisites

The parameter estimation tool needs the motor position as detected by either a quadrature encoder, a
Hall sensor, or a sensorless flux observer. To detect the motor position correctly by using a position
sensor, calibrate the quadrature encoder or Hall sensor attached to the motor under test.

* Ensure that the PMSM is in no-load condition.
If you are using Hall sensors:
* Ensure that the PMSM has Hall sensors.

* Calibrate the Hall sensor offset. For instructions, see “Hall Offset Calibration for PMSM Motor” on
page 4-71.

If you are using a quadrature encoder sensor:
* Ensure that the PMSM has a quadrature encoder sensor.

* Calibrate the quadrature encoder offset. For instructions, see “Quadrature Encoder Offset
Calibration for PMSM Motor” on page 4-80.

NOTE: If you set the Sensor Selection field in the host model to Sensorless, you can skip the
position sensor calibration step.

Supported Hardware
This example supports only these hardware configurations:

Texas Instruments™ F28069M control card configuration:

4-189

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-190

* F28069M control card

* DRV8312-69M-KIT inverter

A PMSM with a Hall or a quadrature encoder sensor
* DC power supply

NOTE: The DRV8312-69M-KIT board has a known issue in the board's power supply section. Due to
this limitation, the board does not support all Hall sensor types. For example, it does not support the
Hall sensor of Teknic M-2310P motor.

Texas Instruments LAUNCHXL-F28379D configuration:

LAUNCHXL-F28379D controller

BOOSTXL-DRV8305 inverter

A PMSM with a Hall or a quadrature encoder sensor

* DC power supply

Required MathWorks® Products

To run parameter estimation, you need these products:

* Motor Control Blockset™

* Fixed-Point Designer™

* Embedded Coder®

* Embedded Coder Support Package for Texas Instruments C2000™ Processors
Prepare Hardware

For the F28069M control card configuration:

1. Connect the F28069M control card to J1 of DRV8312-69M-KIT inverter board.
2. Connect the motor three phases to MOA, MOB, and MOC on the inverter board.
3. Connect the DC power supply to PVDDIN on the inverter board.

4. If you are using a Hall sensor, connect the Hall sensor encoder output to J10 on the inverter board.

5. If you are using a quadrature encoder sensor, connect the quadrature encoder pins (G, 1, A, 5V, B)
to J4 on the inverter board.

For the LAUNCHXL-F28379D configuration:

1. Attach the inverter board to the controller board such that J1, J2 of BOOSTXL aligns with J1, J2 of
LAUNCHXL.

2. Connect the motor three phases to MOTA, MOTB, and MOTC on the BOOSTXL inverter board.

3. Connect the DC power supply to PVDD and GND on the BOOSTXL inverter board.

Estimate PMSM Parameters Using Recommended Hardware

4. If you are using a Hall sensor, connect the Hall sensor output to QEP_B (configured as eCAP) on
LAUNCHXL.

5. If you are using a quadrature encoder sensor, connect the quadrature encoder pins (G, 1, A, 5V, B)
to QEP A on the LAUNCHXL controller board.

For more details regarding these connections, see “Hardware Connections” on page 7-2.
For more details regarding the model settings, see “Model Configuration Parameters” on page 2-2.

For LAUNCHXL-F28379D, load a sample program to CPU2, for example, program that operates the
CPU2 blue LED using GPIO31 (c28379D cpu2_ blink.s1x) to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

Parameter Estimation Tool

The parameter estimation tool includes a target model and a host model. The models communicate
with each other by using a serial communication interface. For more details, see “Host-Target
Communication” on page 6-2.

Enter the details about the hardware setup and the motor under test in the host model. The target
model uses an algorithm to perform tests on the motor and estimate the motor parameters. The host
model starts the required tests and displays the estimated parameters.

Prepare Workspace

Open the parameter estimation host model. You can also use this command to open the host model:

open_system('mcb param est host read.slx');

4-191

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Select Board
Fault Stat
DRV8305 and F2... ~ Test Status auth Shets
Communication Port Over Current
Mo port
selec Under Veltage
e un ™ Sto

Host Serial Setup

Required Inputs

Estimated Motor Parameters

Serial communication

Input DC Valtago: L F I Rs . Chm Parameter Validity
Neminal Current: - A A (peak value) Ld - H Ld
MNominal Speed: Anne W Lg - H

Pole pairs: a Bemf - Vpk_LLkrpm La
Nominal Voltage: EY R Motor Inertia - Kg.m"2 Signal from Target
Sensor Selection: - Nom.s

Sens...
Note: Following inpuls are not required for sensorless

Friction constant -

Opan Mode

PhaseDiff... ~

Paosition Offset; A e PerUnit Fa ;)
! Target Models (F28379D + DRVE30S):
Position meh _param _esl REITE0D_DRVEINS
Total QEP Slits: oA e mCh param esl sensoness lenarmd DRVEINS
Stops

1. Prowvide required inputs.

2. Press Ctri+D to update the workspace

3. Build, Deploy & Start required larget models

4. Select port in Host Serial Selup, Host Serial Receive
and Host Serial Transmit

Signal Conditioning, Scaling and
Advanced Algorithm Parameters

Target Models (FZB069M + DRVA312):

Maodels to calibrate Hall Offset:
et pinarn hall alfsel [2B0659m
m pmsm_hall ofsel Ad g

5. Run this model 1o estimate motor parametars Madels 1o calibrate GEP Offset:

6. To modify the parameters of the estimation algorithm wh_pmarn_gep offsat [28065m
click hang mch_pmsm_gqep_ofisel o037

Copyright 2020 - 2021 The MathWorks, Inc.

Enter these details in the host model to prepare the workspace:
* Select Board — Select the target hardware and inverter combination.

* Communication Port — Open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select the Port to which the hardware is connected. Select an available port from
the list. For more details, see “Find Communication Port” on page 6-4.

* Required Inputs — Enter the motor specification and hardware setup data. You can obtain these
values either from the motor datasheet or from the motor nameplate.

- Input DC Voltage — The DC supply voltage for the inverter (Volts).
- Nominal Current — The rated current of the motor (Ampere).

- Nominal Speed — The rated speed of the motor (RPM).

- Pole Pairs — The number of pole pairs of the motor.

- Nominal Voltage — The rated voltage of the motor (Volts).

- Position Offset — The position (Hall or quadrature encoder) sensor offset value (per-unit
position) (see “Hall Offset Calibration for PMSM Motor” on page 4-71, “Quadrature Encoder Offset
Calibration for PMSM Motor” on page 4-80, and “Per-Unit System” on page 6-20.

- Sensor Selection — The type of position sensor that you are using. You can select one of
these values:

4-192

Estimate PMSM Parameters Using Recommended Hardware

- QEP — Select this option if you are using the quadrature encoder sensor attached to
your motor.

- HALL — Select this option if you are using the Hall sensors available in your motor.

- Sensorless — Select this option if you want to use the Flux Observer sensorless
position estimation block instead of a position sensor. For details about this block, see Flux Observer
Flux Observer.

- Total QEP Slits — The number of slits available in the quadrature encoder sensor. By default,
this field has a value 1000.

NOTE: When updating Required Inputs, consider these limitations:
* The rated speed of the motor must be less than 25000 RPM.

* The tests protect the hardware from over-current faults. However, to ensure that these faults do
not occur, keep the motor's rated current (entered in Nominal Current field) less than the
maximum current supported by the inverter.

* Ifyou have an SMPS-based DC power supply unit, set a safe current limit on the power supply for
safety reasons.

Update Advanced Parameters

You can optionally update the advanced parameters related to the parameter estimation algorithm.
Click the link available in the host model to access and update these parameters:

Steps

1. Provide required inputs.

2. Press Ctrl+D to update the workspace

3. Build, Deploy & Start required largel models
4. Run this model to estimate motor parameters

5. To madify the parameters of the estimation

Openloop Vd reference Voltage for Rs estimation — Enter the reference voltage V;F , in per-
unit (PU)(Volts), for open-loop configuration that the algorithm uses to estimate phase resistance,

5. The ¥ d value should be high enough to bring the rotor to zero position and hold it there.
R Th VF lue should be high h to bring th iti d hold it th
This value should also be high enough to generate readable current feedback from the motor. The

Vrﬁ value should be low enough to avoid rapid increase in motor temperature. This parameter
uses the default value of 0.1 PU.

* Rs estimation time — Enter the time (in seconds) that the algorithm should take to estimate the

phase resistance, RH. This time should be high enough for the algorithm to obtain sufficient
samples for average value computations (for a particular switching frequency). If the measured
voltage and current debug signals contain noise, increase this parameter value so that the
algorithm captures more samples for the average value computations. This parameter uses the
default value of 2 seconds. The maximum Rs estimation time allowed is 9 seconds.

* Frequency Sweep Range for Ld and Lq estimation — Enter the frequency sweep range (in

Hertz) that the algorithm uses for measuring the inductances er and L 4. The lower and upper
frequency limits of this range should be high enough to make the rotor motionless. At the same

4-193

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-194

time, these frequencies should be low enough for the algorithm to obtain sufficient samples (for a
particular switching frequency). Very high frequency values result in a higher inductive reactance

that can lead to inaccurate current measurements. This parameter uses the default frequency
values of 400 and 1000 Hertz.

* Frequency step size for Ld and Lq estimation — Enter the step size (in Hertz) for the

frequency sweep that the algorithm uses for measuring the inductances Lnf and L 4. The
parameter uses the default value of 10 Hertz.

* DC bias for Vd during Ld & Lq estimation — Enter the DC bias voltage, in PU (Volts), for the

-

Va and L;fi voltage perturbations that the algorithm uses for measuring the inductances Lq and

L . The DC bias voltage should be high enough to lock the rotor shaft. At the same time, it should
be low enough for the algorithm to avoid overcurrents at the time of application of sinusoidal
voltage perturbations. The parameter uses the default value of 0.1 PU.

* Amplitude for Vd & Vq during Ld & Lq estimation — Enter the amplitude, peak-to-peak value

-

in PU (Volts), of the T"(:F and vfi voltage perturbations that the algorithm uses for measuring the

inductances Lr? and L 4. This amplitude should be high enough to avoid introducing noise during
ADC measurements. At the same time, it should be low enough for the algorithm to avoid
overcurrents at the time of application of sinusoidal voltage perturbations. The parameter uses
the default value of 0.05 PU.

. Iq

Iq reference for torque control — Enter the reference current, in PU (Amperes), for the
closed-loop torque control tests performed by the algorithm. This current should be low enough to
avoid sudden jolts to the rotor shaft. At the same time, it should be high enough for the algorithm
to overcome the inertia of the rotor shaft. The parameter uses the default value of 0.2 PU.

* Under Voltage limit — Enter the voltage limit (as percentage of the input DC voltage) for
undervoltage protection that the algorithm provides to the motor. The parameter uses 80 as the
default value.

* Over Current limit — Enter the current limit (as percentage of PMSM nominal current) for
overcurrent protection that the algorithm provides to the motor. This value should be high enough
for the algorithm to successfully run parameter estimation tests under normal conditions using
the configured parameters. At the same time, this value should not exceed 100. The parameter
uses 100 as the default value.

* End speed for Inertia estimation — Enter the motor speed, in PU (RPM), used by the algorithm
to calculate the motor inertia. The parameter uses the default value of 0.25.

Deploy Target Models

Before starting the tests by using the parameter estimation tool, you need to download the binary
files (. hex/ .out) generated by the target model into the target hardware. There are two workflows
to download the binary files:

Workflow 1: Build and Deploy Target Model

Use this workflow to generate and deploy the code for the target model. Ensure that you press Ctrl
+D to update the workspace with the required input values from the host model.

Estimate PMSM Parameters Using Recommended Hardware

Click one of these hyperlinks in the parameter estimation host model to open the target model (for
the hardware that you are using):

» For F28069M-based controller attached to either Hall or quadrature encoder sensor:
mcb param est 28069 DRV8312

* For F28069M-based controller that uses the sensorless Flux Observer block:
mcb param est sensorless 28069 DRV8312

» For F28379D-based controller attached to either Hall or quadrature encoder sensor:
mcb param est £28379D DRV8305

* For F28379D-based controller that uses the sensorless Flux Observer block:
mcb param est sensorless f28379D DRV8305

Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

NOTE: Ignore the warning message Multitask data store option in the Diagnostics
page of the Configuration Parameter Dialog is none displayed by the model advisor, by
clicking the Always Ignore button. This is part of the intended workflow.

4 Setting not recommended by Medel Advisor, — >

The "Mulfitask data store” opticn in the Diagnostics page of the
Configuration Parameters Dialog is 'none’. Data stome read block(s) and
;*_;: data store write block(s) exist that execute in different tasks. This can
=¥ causecomu pted data in a real-ime system. Model Advisor recommends
“error’ for this diagnoetic when generating code for a real-time system.
Consider changing the diagnostic toermor.

Change lgnore Always ignore

Workflow 2: Manually Download Target Model

Use this workflow to deploy the binary files (. hex/ .out) of the target model manually by using a
third party tool (the workflow does not need code-generation). This workflow is only valid for Teknic
M-2310P motor.

* Locate the binary files (. hex/ .out) at these locations:

-< matlabroot >\toolbox\mcb\mcbexamples\mch param est f28069 DRV8312.out

-< matlabroot >\toolbox\mcb\mcbexamples
\mcb_param est sensorless f28069 DRV8312.out

-< matlabroot >\toolbox\mcb\mcbexamples\mcb param est f28379D DRV8305.out

-< matlabroot >\toolbox\mcb\mcbexamples
\mcb_param _est sensorless f28379D DRV8305.out

NOTE: The files mcb_param est 28069 DRV8312.out and
mcb_param _est f28379D DRV8305.out use a fixed quadrature encoder slits count of 1000.
Therefore, when you set the required input Sensor Selection to QEP in the host model, you can use

4-195

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-196

these files only for motors connected to a quadrature encoder sensor with 1000 slits (for example,
the Teknic M-2310P motor).

* Open a third-party tool to deploy the binary files (. hex/ .out).

* Download and run the binary files (. hex/ . out) on the target hardware.
Estimate Motor Parameters

Use the following steps to run the Motor Control Blockset parameter estimation tool:

1. Ensure that you deploy the binary files (. hex/ .out) generated from the target model, to the
target hardware.

Then update the required details in the host model. See the section Prepare Workspace for
information about the required inputs.

2. In the host model, check if the Run-Stop slider switch position is Run. Then, click Run in the
Simulation tab to run the parameter estimation tests.

3. The parameter estimation process takes less than a minute to perform the tests. You can ignore the
beep sound produced during the tests.

During an emergency, you can manually turn the Run-Stop slider switch to Stop position to stop the
parameter estimation tests.

4. The host model displays the estimated motor parameters after successfully completing the tests.
* When the parameter estimation tests successfully complete, the Test Status LED turns green.

» If the parameter estimation tests are interrupted, the Test Status LED turns red. The model also
interrupts the tests and turns these LEDs red to protect the hardware from the following faults:

- Over-current fault (this fault occurs when actual current drawn from the power supply is more
than the Nominal Current value mentioned in the Required Inputs section of the host model)

- Under-voltage fault (this fault occurs when input DC voltage drops below 80% of the Input
DC Voltage value mentioned in the Required Inputs section of the host model)

- Serial communication fault

5. When the Test Status LED turns red, run the host model again to rerun the parameter estimation
tests.

If the Test Status LED is green, check the Ld and Lq LEDs available in the Parameter Validity
section of the host model. These LEDs indicate the following statuses:

* Green — Indicates that the computed Ld and Lq values are valid.

* Amber — Indicates that the computed Ld and Lq values are invalid. Run the host model again to
rerun the parameter estimation tests.

6. Use the Signal from Target field on the host model to select a debug signal that you want to
monitor. After selecting a signal, open the SelectedSignal time scope (available in the Signal
Conditioning, Scaling and Advanced Algorithm Parameters subsystem) to view the selected
debug signal.

Estimate PMSM Parameters Using Recommended Hardware

The parameter estimation tool uses the following algorithm to estimate parameters:
Phase resistance, RH — The tool uses Ohm's law to estimate this value.

d axis inductance, Lff — The tool uses frequency injection method to estimate these values.

g axis inductance, L § — The tool uses frequency injection method to estimate these values.

Back-EMF constant, Kr — The tool measures the currents and voltages and uses the electric
motor equation to estimate this value.

Motor inertia, J — The tool estimates this value by using retardation test.

Friction constant, BB — The tool estimates this value by using the torque equation for a motor
running at a constant speed.

Save Estimated Parameters

You can export the estimated motor parameters and further use them for the simulation and control
system design.

To export, click Save Parameters to save the estimated parameters into a MAT (.mat) file.

To view the saved parameters, load the MAT (.mat) file in the MATLAB® workspace. MATLAB saves
the parameters in a structure named motorParam in the workspace.

| motorParam [

1x1 struct with 15 fields

Field Walue Class
HH v de 24 double
H p 4 double
Eﬂ nomCurrent 7 double
] ratedSpeed 4000 double
EE| PositionOffset (,2450 double
HH Rs 0.7250 double
HH Ld 1.6248e-04 double
H Lg 1.5062e-04 double
HH ke 46532 double
HH J 1.0042e-05 double
HH e 4,1306e-05 double
HH FluxPm 0.0064 double
HH T rated 0.3864 double
] la_avg_cal 2,2907e+03 double
EE| Ib_awvg_cal 2.2870e+03 double

4-197

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Click Open Model to create a new Simulink® model with a PMSM motor block. The motor block
uses the motorParam structure variables from the MATLAB workspace.

4-198

Field-Oriented Control of PMSM Using Reinforcement Learning

Field-Oriented Control of PMSM Using Reinforcement Learning

w=

(Speedr=)

Wy

This example shows you how to use the control design method of reinforcement learning to
implement field-oriented control (FOC) of a permanent magnet synchronous motor (PMSM). The
example uses FOC principles. However, it uses the reinforcement learning (RL) agent instead of the
PI controllers. For more details about FOC, see “Field-Oriented Control (FOC)” on page 4-3.

This figure shows the FOC architecture with the reinforcement learning agent. For more details
about the reinforcement learning agents, see “Reinforcement Learning Agents” (Reinforcement
Learning Toolbox).

Reinforcement
learning agent

Observation Action

Reinforcement

— learning
Pl controller lg algorithm
[speed) iVuc
L, % Reward

g Duty Cycles
e Inverse park
d e transform generator
lg \

VE Vh Vc

Mech
to elect
position

Sine-cosine
lookup

e Speed .GE"' Sensor Position
measurement i decoder feedback
The reinforcement learning agent regulates the d-axis and g-axis currents and generates the

corresponding stator voltages that drive the motor at the required speed.

The speed-tracking performance of an FOC algorithm that uses a reinforcement learning agent is
similar to that of a PI-controller-based FOC.

Model
The example includes the mcb pmsm foc sim RL model.
Note: You can use this model only for simulation.

This model includes the FOC architetcure that uses the reinforcement learning agent. You can use the
open_system command to open the Simulink® model.

mdl = 'mcb pmsm foc sim RL"';
open_system(mdl);

4-199

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Permanent Magnet Synchronous Motor - Reinforcement Learning

Note: This example demonstrates PMSM speed control with Reinforcement learning control

Speed ref
% Speed ref in PU —D@
> L] >
E Speed_ref o | Seeed_ref Vabe_duty
g \—’ Duty Sim_fb —_
Idq_ref. » Fi7] ldg ref
M Speed_meas E Sim fo Speed_fb
Speed Control Current Control Inverter and Motor
Speed_fb

Steps:

1. Use live script, compare Reinforcement learning and PI
2. Learn more about this example.

Copyright 2021 The MathWorks, Inc.

When you open the model, it loads the configured parameters including the motor parameters to the
workspace for simulation. To view and update these parameters, open the

mcb_pmsm_foc_sim RL data.m model initialization script file. For details about the control
parameters and variables available in this script, see “Estimate Control Gains and Use Utility
Functions” on page 3-2.

You can access the reinforcement learning setup available inside the Current Controller Systems
subsystem by running this command.

open_system('mcb_pmsm_foc_sim RL/Current Control/Control_System/Closed Loop Control/Current Cont

4-200

Field-Oriented Control of PMSM Using Reinforcement Learning

W W W W W

a
Speed_ref o vd p

Vg
idg ref PU
Speed_fb Speed_ref
va
Speed fb

Reinfarcement Learning

For more information about setting up and training a reinforcement learning agent to control a
PMSM, see “Train TD3 Agent for PMSM Control” (Reinforcement Learning Toolbox).

Note:

* Training a reinforcement learning agent is a computationally intensive process that may take
several hours to complete.

* The agent in this example was trained using the PWM frequency of 5 KHz. Therefore, the model
uses this frequency by default. To change this value, train the reinforcement learning agent again
by using a different PWM frequency and update the PWM frequency variable in the
mcb_pmsm_foc sim RL data.m model initialization script. You can use the following command
to open the model initialization script.

edit mcb pmsm foc sim RL data;
Required Mathworks® Products

* Motor Control Blockset™
* Reinforcement Learning Toolbox™

Simulate Model
Follow these steps to simulate the model.
1. Open the model included with this example.

2. Run this command to select the Reinforcement Learning variant of the Current Controller Systems
subsystem available inside the FOC architecture.

4-201

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

ControllerVariant='RL";

You can navigate to the Current Controller Systems subsystem to verify if the Reinforcement
Learning subsystem variant is active.

open_system('mcb pmsm foc sim RL/Current Control/Control System/Closed Loop Control/Current Cont!

Vd

. . . R R

a
Speed_ref " vd p

Vg
idy ref PU
Speed_fb Speed_ref
Vg p
Speed_fb

Reinforcemeant Learning

Note: The model selects the Reinforcement Learning subsystem variant by default.

3. Run this command to load the pre-trained reinforcement learning agent.

load (' rlPMSMAgent.mat"');

Note: The reinforcement learning agent in this example was trained to use the speed references of
0.2, 0.4, 0.6, and 0.8 PU (per-unit). For information related to the per-unit system, see “Per-Unit
System” on page 6-20.

4. Click Run on the Simulation tab to simulate the model. You can also run this command to
simulate the model.

sim(mdl);

5. Click Data Inspector on the Simulation tab to open the Simulation Data Inspector. Select one or
more of these signals to observe and analyze the simlation results related to speed tracking and
controller performance.

* Speed ref
* Speed fb
+ iq ref

4-202

Field-Oriented Control of PMSM Using Reinforcement Learning

. lq
¢ id ref
e id
Q @
Inspect Compare

Filter Signals
w Run 1: mcb_pmsm_foc_sim_RL [Current]

s Speed_fb
v Speed_Ref

Vg
id

R

id_ref

—
Vd —

—
ig_ref

» [H PWM_Duty_cycles (3)

Archive

Properties

M Speed_fb Speed_Ref
10
e
05 J\— \ { |
1. 1
| |
- 1 ‘)
10
0 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
W id id_ref
01
A
0 e l"—ﬂ«—j o
| —
01 f
0 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Hiq iq_ref
1
[, | \
A A \ A f [f [
ol A Np--— i I ' I\~ |-
‘J ! V
] T i
)
-1

In the preceding example:

* The combination of PI and reinforcement learning controllers achieve the required speed by

30 35

tracking the changes to the speed reference signal.

* The second and third data inspector plots show that the trained reinforcement learning agent acts
as a current controller and successfully tracks both the Id and Iq reference currents. However, a
small steady state error exists between the reference and acutal values of Id and Iq currents.

Use Simulation to Compare RL Agent with Pl Controllers

Use these steps to analyze the speed tracking and controller performance of PI controllers and

compare them with that of reinforcement learning agent:

1. Open the model included with this example.

2. Run this command to select the PI Controllers variant of the Current Controller Systems
subsystem available inside the FOC architecture.

ControllerVariant='PI"';

You can navigate to the Current Controller Systems subsystem to verify if the PI Controllers
subsystem variant is active.

4-203

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

open_system('mcb_pmsm foc sim RL/Current Control/Control System/Closed Loop Control/Current Cont

id
i vd P

ig_ref PU

id Speed_ref
Speed fb vap Vd
iq

Fl Controllers

Vg

]
I
. v v v v

NOTE: The model selects the Reinforcement Learning subsystem variant by default.

3. Click Run on the Simulation tab to simulate the model. You can also run this command to
simulate the model.

sim(mdl);

4. Click Data Inspector on the Simulation tab to open the Simulation Data Inspector. Select one or
more of these signals to observe and analyze the simlation results related to speed tracking and
controller performance.

* Speed ref

* Speed fb

+ iqg_ref

. igq

* id ref

¢ id

o1

. Compare these results with the previous simulation run results obtained by using the RLAgent
(Reinforcement Learning) subsystem variant.

4-204

Field-Oriented Control of PMSM Using Reinforcement Learning

Q

Inspect
Filter Signals

G

Compare

» Run 2: meb_pmsm_foc_sim_RL [Current]

v Speed_fb
v Speed_Ret
vd
Vg
id

I

1d_Ret

Iq_Ref

» HH PWM_Duty_Cycles (3)

Archive (1)

Vg

id

ig
id_ref

iq_ref

» L PWM_Duty_Cycles

Properties

M Speed_fb (Reinforcement Learning agent)

W Speed_fb (Pl controllers)

M Speed_Ref

50 55 60 65 70 75 80 85 90 95 100

0 05 10 15 20 25 30 35 40 45
M id (Reinforcement Learning agent) M id (Pl controllers) M Id_Ref
01
o} | L A
r i r v = "
0.1
0 05 10 15 20 25 30 35 40 45 50 55 80 65 70 75 80 85 90 95 100
M iq (Reinforcement Learning agent) M iq (Pl controllers) M Ig_Ref

-~

v&“

I

In the preceding example:

25 30 35

40 45

50 55 60 65 70 75 80 85 90 95 100

The red signals show the simulation results that you obtain using the RLAgent (Reinforcement
Learning) subsystem variant.

The blue signals show the simulation results that you obtain using the PIControllers (PI
Controllers) subsystem variant.

The plots indicate that (with an exception of Id reference current tracking) the performance of
reinforcement learning agent is similar to the PI controllers. You can improve the current tracking
performance of the reinforcement learning agent by further training the agent and tuning the
hyperparameters.

NOTE: You can also update the reference speed to higher values and similarly compare the
performances between reinforcement learning agent and PI controllers.

4-205

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Estimate Induction Motor Parameters Using Recommended
Hardware

This example determines the parameters of a three-phase AC induction motor (ACIM) using the
recommended Texas Instruments™ hardware. The example determines these parameters:

Nominal Magnetizing Current I i} (Ampere)
Stator resistance I frf (Ohm)

Rotor resistance I ?r (Ohm)

Magnetizing inductance Lm (H)

Stator leakage inductance L-"H (H)

Rotor leakage inductance LJ’:' (H)
Motor inertia.uir (Kg.m"2)

Friction constant B (N.m.s)

The example accepts the minimum required motor and hardware parameters, runs tests on the target
hardware, and displays the estimated parameters.

Note:

» This example does not support simulation. Use the supported hardware configuration to run this
example.

This example computes nominal magnetizing current £ il only if you set the Nominal
Magnetizing current (Id0) required input field to 0. For more details, see the Prepare
Workspace section.

Prerequisites
* Ensure that the motor is in the no-load condition.

* Ensure that the motor has a quadrature encoder sensor. The parameter estimation tool needs the
quadrature encoder sensor to measure the rotor speed.

Supported Hardware

This example supports only the following hardware configuration:
* LAUNCHXL-F28379D controller

* BOOSTXL-DRV8305 inverter

* A three-phase AC induction motor with a quadrature encoder sensor

4-206

Estimate Induction Motor Parameters Using Recommended Hardware

* DC power supply

Required MathWorks® Product

To run parameter estimation, you need:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder Support Package for Texas Instruments C2000™ Processors
Prepare Hardware

1. Attach the inverter board to the controller board such that J1 and]J2 of BOOSTXL align with J1 and
J2 of LAUNCHXL.

2. Connect the motor three phases to MOTA, MOTB, and MOTC on the BOOSTXL inverter board.

3. Connect the DC power supply to PVDD and GND on the BOOSTXL inverter board.

4. Connect the quadrature encoder pins (G, I, A, 5V, B) to QEP_A on the LAUNCHXL controller board.
For more details regarding these connections, see “Hardware Connections” on page 7-2.

For more details regarding the model settings, see “Model Configuration Parameters” on page 2-2.

For LAUNCHXL-F28379D, load a sample program to CPU2, for example, the program that operates
the CPU2 blue LED using GPIO31 (c28379D cpu2 blink.slx) to ensure that CPU2 is not
mistakenly configured to use the board peripherals intended for CPU1.

Parameter Estimation Tool

The parameter estimation tool includes a target model and a host model. The models communicate
with each other by using a serial communication interface. For more details, see “Host-Target
Communication” on page 6-2.

Enter the details about the hardware setup and the motor under test in the host model. The target
model uses an algorithm to perform tests on the motor and estimate the motor parameters. The host
model starts the required tests and displays the estimated parameters.

Note: Ensure that the target model and host model that you use for parameter estimation belong to
the same release version of Motor Control Blockset.

Prepare Workspace

Open the parameter estimation host model. You can also use this command to open the host model:

open_system('mcb _acim param est host read.slx');

4-207

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

ACIM Parameter Estimation

Test Status
Communication Port
No port
selected
Host Serial Setup dn Sto
Required Inputs
Nominal Voltage: ac ol g Estimated Motor Parameters Fault Status
Input DC Veltage: aa |V 1d0 - A Over Current
Nominal Current: A (phase peak Rs - Ohm
A0 | yals Under Voltage
Ohm
Nominal Magnetizing A (phase peak Rr ==
current { 190 } 4 no | i Serial communication
Lm - H
Pale pairs: -
Lis - H
Rated Frequency: = Hz
Lir - H Signal from Target
Total QEP Slits: A M 9 9
Steps Motor Inertia == Kg.m"2
1. Provide required inputs, Iq -
2. Press Ctri+D lo update the workspace Friction constant - MN.m.s
3. Build, Deploy & Start required largel mode
4. Select port in Host Serial Setup, Host Serial Receive,
Host Serial iransmit
5. Run this model to estimate molor parameters SelectedSignal
o Opan Moda
1. It is recommended to set the power supply DC bus —
vollage as: Signa
Input DC Voltage (V) Signal Conditioning and Scaling
= sqrt(2) * Mominal Voltage of motor
{Line-Line RMS V).
2. For some phase sequences, the parameter
eslimalion tool may not compule the inertia and SetectedSignal Target Model (F28379D + DRVB305);
friction constant parameters. Interchange any mch_acim_param_est f283790 DRVAI0S
two motor phase connections and try running the

parameter estimation host model again to estimate

these parameters. c
.) . opyright 2021 The MathWorks, Inc.
3. Use Nominal Magnetizing current {140} input as yrig ’
zero, o estimate Id) using open loop control

Enter these details in the host model to prepare the workspace.

* Communication Port — Open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select the Port to which the hardware is connected. Select an available port from
the list. For more details, see “Find Communication Port” on page 6-4.

* Required Inputs — Enter the motor specification and hardware setup data. You can obtain these
values either from the motor datasheet or from the motor nameplate.

- Nominal Voltage — The rated voltage (line-to-line RMS value) of the motor (Volts).
- Input DC Voltage — The DC supply voltage for the inverter (Volts).
- Nominal Current — The rated current (phase peak value) of the motor (Ampere).

- Nominal Magnetizing current (Id0) — The rated magnetizing current of the motor
(Ampere). If you do not know the nominal magnetizing current of your motor and want the parameter

estimation tool to automatically calculate 1 el(} and use the computed value as input, set this field to 0.

4-208

Estimate Induction Motor Parameters Using Recommended Hardware

The tool updates the display box Id0 (available in the Estimated Motor Parameters section of the

host model) with the computed £ il value only if you set this field to 0.

If you know I i) of your motor and do not want the tool to compute this value, set this field with the

(positive) ' il() value. The tool uses this input to perform the subsequent calculations.
- Pole Pairs — The number of pole pairs of the motor.
- Rated Frequency — The rated frequency of operation of the motor (Hertz).

- Total QEP Slits — The number of slits available in the quadrature encoder sensor. By default,
this field has a value 1000.

Note: When updating Required Inputs, consider these limitations:

* The tests protect the hardware from over-current faults. However, to ensure that these faults do
not occur, keep the rated current of the motor (entered in Nominal Current field) less than the
maximum current supported by the inverter.

* Ifyou have an SMPS-based DC power supply unit, set a safe current limit on the power supply for
safety reasons.

Deploy Target Models

Before starting the tests by using the parameter estimation tool, you need to download the binary
files (. hex/ .out) generated by the target model into the target hardware. There are two workflows
to download the binary files:

Workflow 1: Build and Deploy Target Model

Use this workflow to generate and deploy the code for the target model. Ensure that you press Ctrl
+D to update the workspace with the required input values from the host model.

Click this hyperlink available in the parameter estimation host model to open the target model:
* mcb acim param est f28379D DRV8305
Click Build, Deploy & Start in the Hardware tab to deploy the target model to the hardware.

Note: Ignore the warning message Multitask data store option in the Diagnostics
page of the Configuration Parameter Dialog is none displayed by the model advisor, by
clicking the Always Ignore button. This is part of the intended workflow.

4. Setting not recommended by Medel Advisor, — *

The "Mulfitask data store” opticn in the Diagnostics page of the

Configuration Parameters Dialog is 'none’. Data stome read block(s) and

data store write block(s) exist that execute in different tasks. This can

=¥ causecomu pted data in a real-ime system. Model Advisor recommends
“error’ for this diagnoetic when generating code for a real-time system.
Consider changing the diagnostic toermor.

)
" gl

Change lgnore Always ignore

4-209

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-210

Workflow 2: Manually Download Target Model

Use this workflow to deploy the binary files (. hex/ .out) of the target model manually by using a
third party tool (the workflow does not need code-generation).

* Locate the binary files (. hex/ .out) at this location:

-< matlabroot >\toolbox\mcb\mcbexamples
\mcb_acim param est f28379D DRV8305.out

The mcb _acim param est f28379D DRV8305.out file uses fixed quadrature encoder slits count
of 1000, therefore you can use this file only for motors connected to a quadrature encoder with 1000
slits.

* Open a third-party tool to deploy the binary files (. hex/ .out).

* Download and run the binary files (. hex/ . out) on the target hardware.
Estimate Motor Parameters

Use the following steps to run the Motor Control Blockset parameter estimation tool:

1. Ensure that you deploy the binary files (. hex/ . out) generated from the target model to the target
hardware and update the required details in the host model.

2. In the host model, check if the Run-Stop slider switch position is Run. Then, click Run in the
Simulation tab to run the parameter estimation tests.

3. The host model displays the estimated motor parameters after successfully completing the tests.
When the parameter estimation tests complete, the Test Status LED turns green.

If the tests are interrupted, the Test Status LED turns red. When the LED turns red, run the host
model to rerun the parameter estimation tests.

During an emergency, you can manually turn the Run-Stop slider switch to the Stop position to stop
the parameter estimation tests. In addition, the model interrupts the parameter estimation tests and
turns these LEDs red to protect the hardware from the following faults:

1. Over-current fault (this fault occurs when actual current drawn from the power supply is more
than the Nominal Current value specified in the Required Inputs section of the host model)

2. Under-voltage fault (this fault occurs when input DC voltage drops below 80% of the Input DC
Voltage value specified in the Required Inputs section of the host model)

3. Serial communication fault
Save Estimated Parameters

You can export the estimated motor parameters and then use them for the simulation and control
system design.

To export, click Save Parameters to save the estimated parameters in a MAT (.mat) file.

To view the saved parameters, load the MAT (.mat) file in the MATLAB® workspace. MATLAB saves
the parameters in a structure named motorParam in the workspace.

Estimate Induction Motor Parameters Using Recommended Hardware

motorParam

[£] 1x1 struct with 18 fields

Field Value

v dc 24

p 2

[nomCurrent 3.2000

[ratedFrequency 50

[QEPSlits 1000

£ 1d0 1.3000

[baseSpeed 1500

3 V_Rated 16.9706
Rs 1.1838

o Rr 0.9926

0 Lm 0.0197

o Lis 0.0029

o Lir 0.0029

o) 1.3850e-04
e 1.7790e-04
[0 N_rated 1125

[la_avg_cal 2.3058e+03
[Ib_avg_cal 2.3310e+03

Click Open Model to create a new Simulink® model with an Induction Motor block. The block uses
the motorParam structure variables from the MATLAB workspace.

Note:

» For some phase sequences, the parameter estimation tool may not compute the Motor Inertia
and Friction Constant parameters. Interchange any two motor phase connections and try
running the parameter estimation host model again to estimate these parameters.

* Under the following conditions, slightly increase the Nominal Current required input in the host
model (for example, increase by 10% of the original value) and run the parameter estimation tests
again:

- When the host model runs and executes the tests, the Speed debug signal (in the time scope
available in the host model) does not reach a stable value of around 0. 6 per-unit (PU).

- When running the host model multiple times, the Motor Inertia and Friction Constant
values vary.

Repeat this step until the Speed signal stabilizes (at around 0.6 PU) in the time scope. This ensures
that the computed Motor Inertia and Friction Constant values are accurate.

* Itis recommended to set the power supply DC bus voltage to the following value:

Input DC Voltage (V) = (v/2) x [Nominal Voltage of motor (V) (line — line RM S value)]

You can determine the total leakage inductance (in Henry) using the LJ’H and LJ’:' values
computed by the parameter estimation tool:

4-211

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Total leakage inductance
2

Lf.'f — Lh' —

* The parameter estimation tool does not estimate rated slip (slip_ rated). The tool computes the
rated speed ((1 — slip_rated) x synchronous speed) assuming that

Ellp_l'at(}{'l = 0. 25. We recommend that you measure slip rated or obtain it from the
motor datasheet.

4-212

Estimate PMSM Parameters Using Custom Hardware

Estimate PMSM Parameters Using Custom Hardware

This example includes an algorithm to determine the parameters of a permanent magnet synchronous
motor (PMSM) using any custom motor-control hardware (hardware not used in the Motor Control
Blockset™ examples). The algorithm determines these parameters:

Phase resistance, s (Ohm)

d axis inductance, L« (Henry)

L

g axis inductance, 4 (Henry)

* Back-EMF constant, /v (Vpk LL/krpm, where Vpk LL is the peak voltage line-to-line
measurement)

* Motor inertia, .JJ (Kg.m"2)
o Friction constant, £ (N.m.s)

The algorithm accepts the minimum required inputs and runs tests on the target hardware to
estimate the PMSM parameters.

The example needs a quadrature encoder sensor to measure the rotor position and provide real-time
rotor position feedback. This workflow helps you to integrate the parameter estimation algorithm
with the drivers for your motor-control hardware. It supports any three-phase PMSM.

The workflow includes these four steps to prepare, deploy, and run the PMSM parameter estimation
algorithm on your hardware:

1. Generate code for the parameter estimation algorithm using Embedded Coder®
2. Obtain C code for the custom hardware drivers

3. Integrate parameter estimation algorithm code with the driver code

4. Deploy the integrated code to hardware

Note: This workflow does not support simulation. You can use any motor-control hardware to run this
example.

Prerequisites
* Ensure that the PMSM has a quadrature encoder sensor and calibrate the sensor.

The parameter estimation alogrithm needs the motor position as detected by a quadrature encoder
position sensor. To detect the motor position correctly by using the sensor, calibrate the quadrature
encoder that is attached to the motor under test. For instructions, see “Quadrature Encoder Offset
Calibration” on page 8-11.

* Calibrate the offset values of the ADC (or current sensor) peripheral available in your hardware.
For instructions, see “Open-Loop Control and ADC Offset Calibration” on page 8-2.

* Ensure that the PMSM is in no-load condition.

4-213

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-214

Custom Hardware Configuration

* Controller hardware

* Inverter hardware

* A PMSM with a quadrature encoder sensor
* DC power supply

Required MathWorks® Products

To build the parameter estimation algorithm included in this example, you need these products:
* Motor Control Blockset™

* Fixed-Point Designer™

* Embedded Coder®

Open MATLAB® Project and Prepare Parameter Estimation Model

Use one of these methods to open the MATLAB project:
* Click Open Example.

* Run the command mcb ParameterEstimationAlgorithmStart at the command prompt.

The MATLAB project opens and shows the following files:
* parameter estimation algorithm.slx (model containing the parameter estimation algorithm)

* parameter estimation init.m (model initialization script for the parameter estimation algorithm)

Note:

» Verify and update the motor, inverter, and other parameters related to the target hardware and
parameter estimation algorithm in the model initialization script
parameter estimation init.m.

* The rated speed of the motor (variable motorParam. ratedSpeed) must be less than 25000 RPM.

* The tests protect the hardware from over-current faults. However, to ensure that these faults do
not occur, keep the rated current of the motor (variable motorParam.nomCurrent) less than the
maximum current supported by the inverter.

* Ifyou have an SMPS-based DC power supply unit, set a safe current limit on the power supply for
safety reasons.

Generate Code For Parameter Estimation Algorithm Using Embedded Coder

1. After you open the MATLAB project, double-click the parameter estimation algorithm.slx
model.

Estimate PMSM Parameters Using Custom Hardware

Data Store

P a ramEte r ESti m ati 0 n AI g 0 ri th m Inputs from Initialization Secript

| |_rated ' V_rated I Epeed_raledl | pole_pairs I
I- ble enable_inverter | _R_board I &MeasTest'ﬁ!l Position_offset l
enal -

enable_tests enable_lnverter rrentPL_R! sigma _
| PWM_duty | _ ;q 19 | testEnable
(2)——»vabe_vdc

:

[17]

:

PWM_duty =
Vabe_Vdc Position | inverter_V_max I |FrequencySweeDMaxl
h B2 position |Frequenc1,r8weepMin | ‘szisVoltageReferenceI
lab Speed
@—P QEP_Count speed |Frequency8weepstep|
QEP_Count Eabekd
_ estParaldx Intermediate Values

- g [F S estimatedParameter

QEP_Index . Kp i Kii l
Parameter Estimation Algarithm estimaiecParamelor i=‘j —_—

Data Store
Memdestimated Parameters

Explore more: la_avg_cal Ib_avg cal Rs Bemf
1. Edit motor & inverter parameters I.__'— 9_ L_J— 9_ L_J I._J

2. Generate c code using the 'Embedded Coder' app | arrorlD I ‘ Lq I I _J I | B I
3. Integrate generated code with driver code
_Ld

Copyright 2021 The MathWorks, Inc.

2. Select Modeling > Model Settings > Model Settings to open the Configuration Parameters
dialog box.

3. In the Solver Selection area of the Solver tab, update the Type and Solver fields.

& Configuration Parameters; parameter_estimation_algarithm/Configuration (Active) - [m] =
| Soiver | Simulation time

Data Import/Export
Math and Data Types
» Diagnostics
Hardware Implementation

Start time: 0.0 Stop time: | 10.0

Solver selection

Model Referencing Type: Fixed-slep * | Solver: |discrete (no continuous slates) |
Simulation Target

» Code Generation ¥ Solver details
Coverage

» HOL Code Generation Fixed-step size (fundamental sample time) auto

4. In the Hardware Implementation tab of the Configuration Parameters dialog box, configure the
parameters according to your hardware.

4-215

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

& Configuration Parameters; parameter_sstimation_algarithm/Configuration (Active) - O b
Salver Hardware board. |[Mone -

Data Import/Export

Code Generation system target file: erttlc
Math and Data Types

» Diagnostics Device vendor: [ARM Compatible » Device type: ARM Corfex-M -
| Hardware Implementation | * Davice details
Model Referencing L
Simulation Target Number of bits Largest atomic size
» Code Generation char. |8 short: 16 int 32 integer Long -
Coverage _ long 32 long leng: 64 float, |32 floating-point. Double | =
» HDL Code Generation
double: |64 native: 32 pointer; |32
size_t; 32 ptrdiff_t 32
Byte ordenng: |Little Endian | * | Signed integer division rounds to. Zero -

[«] Shift right on a signed integer as arithmetic shift

[+ Support long leng

OK Cancel Help

5. Update the hardware setup parameters (including the quadrature encoder and ADC offsets) in the
model initialization script (parameter estimation init.m).

6. In the Simulink toolstrip of the model, select Apps > Embedded Coder to open the Embedded
Coder application.

SIMULATION DEBUG MODELING FORMAT C CODE
T r
&b = L) = ¥ [3]

Get Linearization Maodel Control System Parameter Response Robot Operating Embedded
Add-Ons « Manager Linearizer Designer Estimator Optimizer System (ROS) Coder

ENVIROMMENT APPS L

7. In the Simulink toolstrip, select C Code > Code Interface > Default Code Mappings to open
the Code Mappings - C dialog box.

4-216

Estimate PMSM Parameters Using Custom Hardware

SIMULATION DEBUG MODELING FORMAT
= [44 =
ﬂ @ @ D Code for @ =l a 7 Lﬁ) (:
Embedded Quick C/C++ Code Settings Code algorithm Generate View Verify Share
C Code ~ Start Advisor * - Interface ~ Code ~ Code Code ~ =
T F \) |
OU'IE%IT ASSISTANCE PREPARE ljj Default Code Mappings BE RESULTS VERIFY SHARE g
Bl Configure code for model elament categories o
= &
Individual Element Code Mappings
= Configure code for individual model elements.
=
Embedded Coder Dictionary
U Configure code generation data and functions
single convert b— Storage Class Indicator
speed_ref_rpm Toggle vizibility of storage class indicators on signals
™ covert — NGD
boost_voltage 7 Calibration and Measurement properties Vabe in PU
@rmolean Toggle visibility of properties in the Code Mappings
enable Control_Systerm
8. In the Code Mappings - C dialog box, open the Functions tab.
9. For a listed C function, click the hyperlink under the Function Preview column to open the
Configure C Initialize Function Interface dialog box.
Code Mappings - C [I

Data Defaults Function Defaults Inports Outports Parameters Data Stores Signals/States

(S

ﬁ Initialize Maodel default parameter_estimation_initialize | void parameter_estimation_initialize([* salfl)
j‘x Periodic:D1 [Sample Time: 5e-05s] Model default parameter_estimation_step void parameter_estimation_step([* self], arg_enable_tests
fx Terminate Model default void parameter_estimation_algorithm_terminate([* self])

10. Use the Configure C Initialize Function Interface dialog box to configure the interface and
arguments of the C function.

4-217

4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

|:_i| Configure C Step Function Interface; parameter_estimation_algarithm - a >

Configure the generated C function interface, including function name and arguments.

C functicn prototype vioid parameter_estimation_step([* self], arg_enable_tests * arg_Mabe Vde, .

C Step Function Mame: | parameter_estimation_step

[+] Configure arguments for Step function protatype

Get default |(* invokes update diagram)

DAATRA b

Fa?

C returm argument vioid -
Port Name Port Type C Type Qualifier C Identifier Name
enable_tests Inport Value w» | | arg_enable_tests
Vabe_Wdc Inport Pointer - | | ang_Vabc_Vdc
lab Inport Puointer w | |arg_lab
QEP_Count Inport Value * | |arg_QEP_Coumt
QEP_Index Inport Value w | |arg_QEP_Index
enable_inverter Cutpoart Fointer = | | arg_enable_inverter

e FILAIR S dusbas

Dirag and drop rows to spacify il"gLill'I-'-;;FOrdEr
Validate | (* invokes update diagram)

Fress Validate button to get validation results

QK Cancel Help Apply

11. Click Apply and OK to complete configuring the C function.

12. Repeat steps 9 to 11 for all the listed functions.

13. In the Simulink toolstrip of the target model, select C Code > Generate Code > Build to build
the model and generate a . ¢ file for the target model for the current controller.

SIMULATION DEBUG MODELING FORMAT CCODE | x
@ 5 @ © Ll e o
Embedded Quick C/C++ Code Settings Code algorithm
C Code - Start Advisor = - Interface
CUTPUT | ASSISTANCE PREPARE GEMERATE CODE
=3
|
(=l

This image shows an example of a C function available in the generated current controller code.

4-218

EHag. & <
View & Verify Share
Code Code « -

+++ Build
Generate code and build model

+++ Generate Code

Generate code only. Do not execute makefile

J=pm

apad

Estimate PMSM Parameters Using Custom Hardware

/* Model step function */

void parameter estimation_step(real32 T arg_enable tests, uintlée T arg Vabc Vdc
[4], uintls T arg Iab[2], uintl6 T arg QEP_Count, uintlé T arg QEP_Index,
real32 T *arg_enable_inverter, real32 T arg_PWM_duty[3], real32_T
*arg_position, real32 T *arg_speed, uint32_T *arg_estParaldx, real32 T

*arg_ estimatedParameter)

real32 T rtb_Addl_e;

real32 T rtb_aAdd3;

real32 T rtb_InvertingNonInverting idx @;
real32 T rtb_InvertingNonInverting idx 1;
real32 T rtb_Merge;

real32 T rtb_Merge f;

real32 T rtb_MultiportSwitch_idx @;
real32 T rtb_MultiportSwitch_idx 1;
real32 T rtb_PositionGain;

real32 T rtb_Product_kr;

real32 T rtb_Switch_bn;

real32 T rtb_Switch_m_idx_8;

uint32_T rtb_PositionToCount;

uintle T rtb_Sum3_b;

boolean T rtb_UnitDelay kd;

FE 3

Gain: '<59>/Inverting//Non Inverting' incorporates:

Note: The generated C function uses the interface that you configured in step 10.

Obtain C Code For Custom Hardware Drivers

You can use the code generation software supported by the hardware manufacturer to configure the
hardware peripherals and generate C code for the hardware drivers.

Alternatively, you can also use a manually written driver code.
Integrate Parameter Estimation Algorithm Code With Driver Code

1. Call the parameter estimation algorithm functions from the driver code using the configured
function parameters. This image shows a call to a parameter estimation algorithm C function.

// ADC conversion complete interrupt configured to trigger at every 50 us
void HAL_ADCEx_InjectedConvCpltCallback(ADC_HandleTypeDef #hadc){

// call to parameter_estimation_step function hepﬁ

2. Use the return value from the function call to complete integrating the driver with the parameter
estimation algorithm.

This figure describes the program control flow of the example.

4-219

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

ry ADC trigger ADC trigger
| |
| ! PWM
PWM ! i
! . counter
counter | .
| period
— » "
PWM time period '
ADC — PWM synchronized
Duty ratios ADC EOC interrupt Duty ratios
(from Current Control) =~ BN ADC SOC trigger PN - - - - - o e m e o m - - Parameter (to PWM)
> Estimation >
* ith
Currents and voltages Qe
from motor
(in counts)
Measured ———% Data
motor position .
—————— >
Currents from motor Voltages from motor Event orinterrupt

4-220

(in Amperes) (in Volts) - Hardware peripheral
- Software subsystem

For other details about the recommended code structure (that is used by the Motor Control
Blockset™ examples), see “Program Control Flow of Motor Control Blockset Examples” on page 6-
23.

Deploy Integrated Code to Hardware
1. Complete the hardware connections.

2. Use the code generation and deployment software supported by the hardware manufacturer to
compile, build, and generate a binary (for example .HEX) file from the integrated code. Use the
software to flash the binary file to the target hardware.

3. The integrated code running on the target hardware saves the computed motor parameters in
these global variables:

* Rs — Phase resistance

* Ld — d axis inductance

* Lg — g axis inductance

* Bemf — Back-EMF constant
* J — Motor inertia

* B — Friction constant

Tune PI Controllers (in Field-Weakening Control Mode) Using FOC Autotuner Block

Tune PI Controllers (in Field-Weakening Control Mode) Using

FOC Autotuner Block

This example uses the Field Oriented Control Autotuner block to compute the gain values of the PI
controllers available in the speed, current, and flux control loops of a field-weakening control
algorithm. For details about this block, see Field Oriented Control Autotuner.

The example automatically computes the PI controller gains to run an Interior Permanent Magnet
Synchronous Motor (IPMSM) using field-weakening control. Field-weakening control is an operating
mode that runs the motor at speeds greater than the base speed or rated speed. To enter this mode

the example reduces the d-axis stator current (*ilr il) to a negative value, which reduces the rotor flux
linkage. This enables the motor to run above the base speed. For more information about this
operating mode, see “Field-Weakening Control (with MTPA) of PMSM” on page 4-48.

Use the code-generation capability of the example to deploy the gain-tuning algorithm to the target
hardware. This enables you to run the algorithm on the target hardware connected to a motor and
compute accurate PI controller gains by processing motor feedback in real-time on the hardware. The
example uses a quadrature encoder sensor to measure the rotor position.

Note: This example provides the field-weakening control algorithm as a reference. You can refer this
example and use a similar approach to add the Field Oriented Control Autotuner block and the gain-
tuning algorithm to the field-weakening logic available in your model.

Model

The example includes the target model mcb ipmsm fwc autotuner £28379d.

You can use this model for both simulation and code generation. Use the open_system command to

open the model.

open system('mcb ipmsm fwc autotuner f28379d.slx');

HW Prerequisites
1. TI F28379D LaunchPad

2. BOOSTXL-DRVB305 Booster pack
3. IPMSM motor with QEP

HW_INT f—

Code generation L—|

Steps:

1. Edit motor & inverter parameters.

2. Use offset computation model to
determine position offset.

3. Update offset in the pmsm.PositionOffset Simulaticn
variable available in Init script.

4. Enter a "Max Voltage Limit [PUI" value.
For details, see documentation.

5. Click Build, Deploy & Start.

6. Control motor via host model.

7. Leam more about this example.

Speed
SpeedProfile RT

RTS8

Global Variables Max Voltage Limit [PU]

| StartStop | | ActiveLoop | | PI_Params

| laOffset IbOffset Enable |

EnClosedLoop |

| UpdatePIParam

Debug_signals

| SpeedRel | | WmLimit | |BynassFluxLoon|

HW_INT =

Tuning PI Controllers for Field-Weakening
Control of IPMSM Using FOC Autotuner

(1) initialize
Hardware Init
’IE. Heartbeat LED
4
SCI_R_INT() L] Feedbacks_sim Duty_Cycles - —
Speed Speed_Out — Speed_Ref PU Igitel PU
" Iq_Ref PU EnableFluxTuning [“~# Duty_Cycles Feedbacks_sim [+
Vmlimt Autotuner_Ctrl E] Speed_Meas_PU IdgRef_PU Fl;l'_. \d_Ref_PU s .
Serial Receive Speed Control Current Control Inverter and Motor - Plant Model
EnableFluxTuning
|7 Autotuner Mode Control

Copyright 2021 The MathWorks, Inc.

4-221

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

The Field Oriented Control Autotuner block iteratively tunes the d- and g-axis current control, speed
and flux control loops and computes the gains of the current, speed, and flux PI controllers. Use this
command to locate the Field Oriented Control Autotuner block available inside the model:

open_system('mcb ipmsm fwc autotuner f28379d/Current Control/Control System/Closed Loop Control/|

(D
. perlurbation daxis —’Pﬁm:“—@
PlDout_Daxis I—P PiDout daxis Perturbation_Daxis
3 1 - .
D P measured feedback daxis
Id_fb . perurbation gaxs Porut_Q = 2) .
@ 5 ¥ PlDout gaxis Perturbation_Caxis

measured feedback gaxis perturbation spaed

% _

Perturbation_Speed

g fb ¥ PiDout spd Field Oriented Control
- ‘ perturbation flux —=
(5) »| measured feedback spd Autoluner
lq_Ref — Perturbation_Flux
- L1} ux L
.B pid gains _I
»(5)
Speed_fb P measured feedback flux =
Pl_Params
@ » startstop convergence
PlDout_Flux | .;@
s) | Activel.oop frdl Convergence
Flux_fio |
(€D
B == .
StartStop | o * »<_D_Startstop]
{10)
ActiveLoop b =2 i »<Q_stanstog]
P Y Sl ox > f_S1artS1op|
N o »<_w_StanStop|

In addition to the current and speed feedback from the plant, the block processes the reference flux
and flux feedback values. It also processes the current and speed PI controller outputs to compute
the PI controller gains (Kp and Ki).

4-222

Tune PI Controllers (in Field-Weakening Control Mode) Using FOC Autotuner Block

wre
(Speed™)
*—

—|
Wy

(Iqu-f Alq'ﬁ)
Pl controller gains

(K and K;)

>F\ux and speed

perturbations

re
q [Iq’ef+ Alq'e')
¢ - ield Ori d
- a®
controller controller Fiel - OZIEF:te Ve V) Inver:e
(speed) —] {current Iq) re ontrol parl
o — Autotuner transform

af e
(Vo= + DVqrEf) ry ry
sinf,

(157 + A1) (147 + Al

Pl

controller
R (current Id) la_m
lam

Va

cosB,

-
*—> Field —
Vinas o weakening

(flux) controller —

Vs = Unsaturated peak
value of V = and V=

For more details on the FOC architecture, see “Field-Oriented Control (FOC)” on page 4-3.
Required MathWorks® Products
To simulate model:

» Motor Control Blockset™
* Simulink Control Design™

To generate code and deploy model:

* Motor Control Blockset™

* Simulink Control Design™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

Prerequisites for Simulation and Hardware Deployment

1. Open the model initialization script for the target model. Check and update the motor, inverter, and
other control system and hardware parameters available in the script. For instructions on locating
and editing the model initialization script associated with a target model, see “Estimate Control Gains
and Use Utility Functions” on page 3-2.

2. In the Inverter & Target Parameters section of the model initialization script, verify that the
mcb_SetInverterParameters function uses the argument BoostXL-DRV8305. This enables the
script to use the preprogrammed parameters for the BOOSTXL-DRV8305 inverter.

3. Configure these parameters correctly in the model initialization script. These variables are
essential for the gain-tuning algorithm to compute the PI controller gains. If the values of these
variables are incorrect, the model may fail to bring the motor to the steady speed state.

4-223

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-224

* pmsm.p
* pmsm.I rated
* pmsm.PositionOffset

* pmsm.QEPSlits

4. If you are using a motor that is not listed in the mcb_SetPMSMMotorParameters function (used in
the System Parameters // Hardware parameters section of the model initialization script), tune
the default values of the following initial gains available in the Initial PI parameters section of the
model initialization script. This ensures that the motor reaches the steady state of speed-control
operation:

* PI params.Kp Id

* PI params.Ki Id

* PI params.Kp Iq

* PI params.Ki Iq

* PI params.Kp Speed
* PI params.Ki Speed
* PI params.Kp Flux

* PI params.Ki Flux

When you either simulate or run the example on a target hardware, the example uses crude values of
the PI controller gains to achieve the steady state of speed-control operation.

Note: When using this example, if the motor (whether it is listed or not in the
mcb_SetPMSMMotorParameters function) does not run, try tuning the default values of these
parameters.

5. In the FOC Autotuner parameters section of the model initialization script, check and update the

parameters of the Field Oriented Control Autotuner block. This sets the reference bandwidth and
phase margin values for both the speed and the current PI controllers.

Simulate the Target Model

Simulating the example is optional. Follow these steps to simulate the target model:

1. Open the target model.

2. Click Run on the Simulation tab to simulate the target model.

3. Observe the computed PI controller gain values in the Display blocks available in the
mcb_ipmsm fwc autotuner f28379d/Current Control/PI Params Display and Logging

subsystem.

The computed gains might not be accurate because step 3 in the Prerequisites for Simulation and
Hardware Deployment section checks the accuracy of only four motor parameters.

Tune PI Controllers (in Field-Weakening Control Mode) Using FOC Autotuner Block

If you want to compute and test the PI controller gains using simulation, follow these steps before
clicking Run on the Simulation tab of the target model.

* In the System Parameters // Hardware parameters section of the model initialization script,
verify that the mcb SetPMSMMotorParameters function uses an argument that represents your
motor (for example, Teknic2310P). Open the mcb SetPMSMMotorParameters function to see
the preprogrammed cases that store the motor parameters of commonly used PMSMs.

If the mcb_SetPMSMMotorParameters function does not list your PMSM, determine the parameters
for your motor using these steps.

* If you have motor control hardware, you can estimate the parameters for your motor, by using the
Motor Control Blockset parameter estimation tool. For instructions, see “Estimate PMSM
Parameters Using Recommended Hardware” on page 4-189 and “Estimate PMSM Parameters
Using Custom Hardware” on page 4-213.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

* Ifyou obtain the motor parameters from the datasheet or other sources, add and configure the
motor parameters in the model initialization script. These parameter values override the selected
pre-programmed case in the function mcb SetPMSMMotorParameters.

If you use the parameter estimation tool, do not update the motor parameters directly in the model
initialization script. The script automatically extracts the motor parameters from the updated
motorParam variable in the workspace.

After you simulate the target model and determine the gains, update your model (that implements
field-weakening control) with the computed gain values to quickly bring the motor to a steady speed
state.

Deploy the example to the target hardware to tune the PI controller gains more accurately by using
an actual hardware connected to a motor. For more details, see the Generate Code and Deploy Model
to Target Hardware section.

Generate Code and Deploy Model to Target Hardware

This section shows how to generate code and run the algorithm for tuning the PI controller gains on
the target hardware. Running the example on the hardware enables you to compute the PI controller
gains more accurately by processing the feedback from an actual plant in real-time.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. Before you run the host model on
the host computer, deploy the target model to the controller hardware board. The host model uses
serial communication to command the target model and run the motor in closed-loop control.

Required Hardware

The example supports the following hardware configuration. You can also use the target model name
to open the model from the MATLAB® command prompt.

LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter: mcbh ipmsm fwc autotuner f28379d

For more information on connections related to this hardware configuration, see “LAUNCHXL-
F28069M and LAUNCHXL-F28379D Configurations” on page 7-5.

4-225

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Generate Code and Run Model on Target Hardware
1. Complete the hardware connections.

2. The model automatically computes the analog to digital converter (ADC) offset (also known as
current offset). To disable this functionality (enabled by default), update the value of the
inverter.ADCOffsetCalibEnable variable in the model initialization script to 0.

Alternatively, you can compute the ADC offset values and update them manually in the model
initialization script. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and Calibrate
ADC Offset” on page 4-10.

3. Compute the quadrature encoder index offset value and update it in the pmsm.PositionOffset
variable in the model initialization script of the target model. For instructions, see “Quadrature
Encoder Offset Calibration for PMSM Motor” on page 4-80.

4. Open the target model. If you want to change the default hardware configurations of the model,
see “Model Configuration Parameters” on page 2-2.

5. Load a sample program to the CPU2 of the LAUNCHXL-F28379D board. For example, load the
program that operates the CPU2 blue LED by using GPIO31 (c28379D cpu2_ blink.slx). This
ensures that CPU2 is not mistakenly configured to use the board peripherals intended for CPU1.

6. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
Verify the variables updated by the target model in the base MATLAB workspace.

7. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model.

open_system('mcb_ipmsm fwc autotuner host 28379d.slx');

Tuning PI Controllers for Field-Weakening
Control of IPMSM Using FOC Autotuner - Host

Prerequisites:
1. Deploy the target model to the hardware. 2500

2. The variables are updated by the target
model in the base workspace. olop olan Speed Ref [RPM]

Tuning Status

Steps:
1. Select the serial port in Host Serial Setup, Maotor 0.8
Host Serial Recieve and Host Serial Send. M imi == = =
e b L e ax Voltage Limit [PU
2. Use the Motor switch to start the mator (when tun?ng flux I!M:tp} X) Kp_Flux
3. Use the "Speed Ref [RPM]" field to run the motor at Kp_Daxis Kp_Qaxis Kp_Speed -
base speed. Determine a steady value of o>10p olart
"Wm_Feedback” debug signal. '\LllOtLl ner De{au' — — — —
4. Enter a value that is less than steady "Vm_Feedback” Autotuner PIP "
value in the "Max Voltage Limit [PU]" field. arameters Ki_Daxis Ki_Qaxis Ki_Speed Ki_Flux
5. Enter a reference speed in the "Speed Ref [RPM]" L |
field. Note: The model tunes the flux loop only when .
reference speed is greater than the base speed. Debug signals
B. Observe the "Speed_Ref" debug signal. Ensure that
the motor reaches a steady speed state. C Speed Ref & Speed Feed
7. Start the tuning process using the Autotuner switch. - -
Keep the Pl Parameters swilch in the "Autotuner” Debug1 »l
position during the tuning process. Nill part [:] Id REf & Id .FEEd baCk
8. Before you rerun the tuning process, ensure that you selected T .
reset the controller gains to their default values by — |C[_Ref & Iq_Feed back
turning the Pl Parameters switch to "Default™, You can Host Serial Setup Serial Communication SelectedSignals
start the tuning process again after turning the PI la & Ib
Parameters switch back to "Autotuner”,
Note: Keeping "Max Voltage Limit [PU]" greater than | & P
"Wim_Feedback” will result in incomplete tuning due to Copyright 2021 The MathWorks, Inc. a 0s
the inactive flux loop.

For details on serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

4-226

Tune PI Controllers (in Field-Weakening Control Mode) Using FOC Autotuner Block

8. In the Host Serial Setup block parameters dialog box, select the Port name to which you have
connected the target hardware.

9. Turn the Motor slider switch to the Start position to start running the motor.

10. Enter the motor's rated speed value in the Speed Ref [RPM] field to start running the motor at
the rated speed.

Use the Vm_Limit & Vm_Feedback signals listed in the Debug signals section to determine a
steady value of the Vmm_Feedback signal.

11. Enter a value that is less than the steady Vm_Feedback signal value in the Max Voltage Limit
[PU] field. For example, if Vm_Feedback has a steady value of 0.9, then you can enter a value such
as 0.8 in the Max Voltage Limit [PU] field.

Note: Keeping Max Voltage Limit [PU] greater than Vm_Feedback will result in incomplete tuning
due to an inactive flux loop.

12. Enter a reference speed the Speed Ref [RPM] field that is greater than the motor's rated speed.

Note: The model tunes the flux control loop only if the reference speed that you provide is greater
than the motor's rated speed.

13. In the Debug signals section, select Speed_Ref & Speed_Feedback and monitor the speed
signals in the SelectedSignals time scope. Wait until the motor reaches a steady speed.

The example can begin tuning only in the steady speed state.
14. Check that the PI Parameters slider switch is in the Autotuner position.

15. Turn the Autotuner slider switch to the Start position to start autotuning the PI controller gains.
The tuning process introduces perturbations depending on the controller goals (bandwidth and phase
margin) in the controller output. The example uses the system response to the perturbations to
calculate the optimal controller gain values.

The model performs these tests iteratively on the motor and determines an accurate set of Kp and Ki
gains for the current, speed, and flux PI controllers.

The Tuning Status display changes status from Tuning not started to Tuning in progress.

Note: When tuning is in progress, ensure that the PI Parameters slider switch remains in the
Autotuner position.

16. When the tuning process successfully completes, the Tuning Status display changes status from
Tuning in progress to Tuning complete.

The target model updates the speed, current, and flux PI controllers running on the target hardware
with the computed Kp and Ki gains. In addition, the host model displays these values.

17. If the gain-tuning algorithm encounters an error during the tuning process, the Tuning Status
display shows Tuning failed. Turn the Autotuner slider switch to the Stop position and see the
Troubleshooting section for the troubleshooting instructions.

18. If you have successfully completed the tuning process, turn the Autotuner slider switch to the
Stop position. Then turn the PI Parameters slider switch to the Default position to enable the

4-227

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-228

default operating mode of the target model. In this mode, the target model uses the computed gain
values to operate the motor using field-weakening control.

Note:

» If you want to run the tuning process again, ensure that you turn the PI Parameters switch to the
Default position. This ensures that the host model resets the gain values that it displays. You can
restart the tuning process (using the Autotuner switch) after turning the PI Parameters switch
back to Autotuner position.

» If the Tuning Status is "Field-Weakening Control was not active," then further reduce Max
Voltage Limit [PU] and restart the tuning process.

19. Validate the computed gain values. For instructions, see the Validate Computed PI Controller
Gains section.

Validate Computed PI Controller Gains

1. Check that the motor is running and that the PI Parameters slider switch is in the Default
position.

2. Select the Speed_Ref & Speed_Feedback debug signal in the Debug signals section of the host
model.

3. Open the SelectedSignals time scope to monitor the reference speed and speed feedback signals.

4, Update the reference speed (for your motor control application) in the Speed Ref [RPM] field and
monitor the signals in the time scope.

5. In the SelectedSignals window, navigate to Tools > Measurements and select Cursor
Measurements to display the Cursor Measurements area.

4 SelectedSignals

File Tools View Simulation Help
o - Zoom In R ol Eﬂ'fbﬂ‘
Zoom X
ZoomY
Zoom Qut
Pan
Axes Scaling >
Triggers

Measurements > Trace Selection

Cursor Measurements

Signal Statistics

Bilevel Measurements
Peak Finder

Tune PI Controllers (in Field-Weakening Control Mode) Using FOC Autotuner Block

6. Drag cursor-1 to a position that indicates zero Speed Ref (just before Speed ref rises). Drag
cursor-2 to a position where Speed Feedback meets Speed Ref for the first time.

AT indicates the actual response time of the FOC algorithm (time taken by the motor to reach 100%
of the reference speed from zero reference speed).

4| SelectedSignals

File Tools View Simulation Help

@- 40> @

SRR

5 |7 ¥ Trace Selection

Ree/signal_1:1 ~

¥ Cursor Measurements

Speed_Feedback
~" (actual speed)

. Speed_Ref
(reference speed)

" Rise time for Speed_Feedback
(to reach 100% of Speed_Ref
from 0% of Speed_Ref)

Frame based Offset=0 T=37.890

7. For the speed PI controller, use the PI _params.SpeedBW variable available in the model
initialization script to determine the bandwidth of the speed PI controller. Compute the theoretical
response time using this relation:

p.
Pl _params.Speed BW

Response_time =

Compare the theoretical Response time with the actual response time AT to validate the speed PI
controller gains.

Similarly, you can validate the current PI controller gains by analyzing the step responses of the flux
and the d and q current PI controllers.

Troubleshooting
Follow these steps to troubleshoot failed gain-tuning instances.
1. Identify the loop (either d current, q current, flux, or speed) for which the tuning process failed.

The target model tunes the PI controllers in this sequence:

4-229

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-230

d current controller — g current controller — flux controller — speed controller

Tuning failure of one controller in this sequence results in incorrect gain tuning for the subsequent
controllers.

Check the computed gains for the four controllers using the Display blocks available in the host
model. A zero Kp or Ki controller gain value indicates that the tuning process failed for the
respective controller.

Follow the subsequent steps for the first PI controller in the preceding sequence for which the tuning
failed.

2. Select the controller reference and feedback signals for the controller identified in step 1, in the
Debug signals section (for example, Iq_Ref & Iq_Feedback for the q current controller) and open
the SelectedSignals time scope.

3. Check that the PI Parameters slider switch is in the Autotuner position.
4. Turn the Autotuner slider switch to the Start position to run the tuning process again.

5. Monitor the feedback signal for the controller identified in step 1 (for example, Iq_ Feedback) in
the SelectedSignals time scope.

Case 1: Follow these steps if the peak value of the controller feedback signal satisfies one of these
conditions:

* Value is too high (greater than 1)

* Value is too low (less than PI_params.CurrentSineAmp for the current controllers, less than
PI params.FluxSineAmp for the flux controller, or less than PI params.SpeedSineAmp for
the speed controller)

Note: The PI _params.CurrentSineAmp, PI params.FluxSineAmp, and
PI params.SpeedSineAmp variables are defined in the model initialization script.

a. If the controller identified in step 1 is the d or the q current controller, modify the
PI params.CurrentSineAmp variable such that it is less than the peak value of the controller
feedback signal.

b. If the controller identified in step 1 is the flux controller, modify the PI params.FluxSineAmp
variable such that it is less than the peak value of the controller feedback signal.

c. If the controller identified in step 1 is the speed controller, modify the PI_params.SpeedSineAmp
variable such that it is less than the peak value of the controller feedback signal.

d. Turn the Autotuner slider switch to the Stop position and then to the Start position to run the
tuning process again.

Case 2: Follow these steps if the peak value of the controller feedback signal lies in the range:

' [PI_params.CurrentSineAmp, 1]

for the current controllers)

' [PI_params.FluxSineAmp, 1]

for the flux controller)

Tune PI Controllers (in Field-Weakening Control Mode) Using FOC Autotuner Block

" [PI_params.SpeedSineAmp, 1] (for the speed controller)

Note: The PI params.CurrentSineAmp, PI params.FluxSineAmp, and
PI params.SpeedSineAmp variables are defined in the model initialization script.

a. Update the parameters of the Field Oriented Control Autotuner block (that set the reference
bandwidth and phase margin values) available in the FOC Autotuner parameters section of the
model initialization script.

b. Turn the Autotuner slider switch to the Stop position and then to the Start position to run the
tuning process again.

4-231

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Field-Oriented Control (FOC) of PMSM Using Hardware-In-The-
Loop (HIL) Simulation

4-232

This example uses hardware-in-the-loop (HIL) simulation to implement the field-oriented control
(FOC) algorithm to control the speed of a three-phase permanent magnet synchronous motor
(PMSM). The FOC algorithm requires rotor position feedback, which is obtained by a quadrature
encoder sensor. For more information on FOC, see “Field-Oriented Control (FOC)” on page 4-3.

NOTE: This example runs only on Windows and Linux platforms. It is not supported on the Mac
platform.

When the actual motor and inverter hardware are not available, you can use the HIL simulation
workflow to validate the FOC algorithm in real-time by operating a realistic virtual plant. The HIL
simulation setup consists of these elements:

* Desktop computer or development hardware running Simulink®
* Controller hardware running the code for the controller
» Target hardware (FPGA) running the code for the physical plant

You need to deploy the controller code to the controller hardware and the HDL code for the plant to
the FPGA target hardware. After deploying the controller code, the controller runs the FOC algorithm
and outputs actual PWM signals. Whereas, after HDL code deployment, the FPGA hardware
effectively emulates the actual inverter and motor by running the HDL code for the plant. Therefore,
it replicates the actual plant by accepting the PWM signals and providing realistic current and rotor
position feedback to the controller in real-time. The FPGA hardware runs in external mode and logs
data in the Simulation Data Inspector of the Simulink Real-Time model.

The Simulink host model running on the desktop computer, interacts with the controller using serial
communication protocol. You can use the host model to communicate with the controller, and
therefore, control the motor operation.

Field-Oriented Control (FOC) of PMSM Using Hardware-In-The-Loop (HIL) Simulation

Hardware-In-The-Loop (HIL) Simulation

Host model Controller hardware Target hardware (FPGA)
. Actual PWM
Serial PRRRIRRINRRED ¢ L_Ia |
Communication - |- signats
S : :
- = —1§ Processor -
s S - -
——— = = -
= = Phase current
ERERRRERDRERR
and rotor

Simulation
Data Inspector

Simulink Real-Time (SLRT) model position signals ?
1
1
1
]
1
1
1
1
]
1
1
1
1
1
]
1
1
1
1

External mode

ro--dmcd

You can also use this setup to effectively test scenarios like hardware failures, motor burn-out, and
other faults. To know more about HIL simulation, see “Basics of Hardware-In-The-Loop simulation”
(Simscape).

Open MATLAB Project

The example is packaged as a MATLAB® project. Use one of these methods to open the MATLAB
project window:

1. Click Open Example.

2. Run the command mcb_foc_hil at the command prompt.

Model

The MATLAB project has a model folder that includes the following models:

* mcb _pmsm foc f28379d.s1x - This target model contains the FOC algorithm that you can
deploy and run on the controller hardware. The model algorithm applies the Subcycle
Averaging method for simulation and to run on the controller hardware to validate the controller
FOC algorithm. You can use this model to generate the embedded C code for the controller
hardware.

4-233

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

HW Prerequisites
1. TI FB379D0 LaunchPad

2. BOOSTXL-DRWVE305 Booster pack

or BOOSTXL-3PhGaNinv Permanent Magnet Synchronous Motor
3. PMSM mictor with QEP sensor . .
4. Speedgoat 10-334 FPGA module with Field Oriented Control

supported Real-Time set up

Steps:
. Edit motor and controller parameters.

. Edit sample times for inverter and motor.

. Simulate this model and observe results in
Simulation Data Inspector

. Use slrf_ex_pmsm model to generate HDL
model and program FPGA with inverter and
motor.

6. Use host model to conftrol the embedded

OCESSOT.

[0 % I

Y

Feedbacks_sim Dty Cycles

¥

Duty Cycles Feedbacks_sim ——

b

Embedded Processor Inverter and Motor
Learn more about this example.

Copyright 2021-2022 The MathWorks, Inc.

* mcb host f28379d.slx - This is a host model to communicate with the embedded target
hardware. Using this model, you can start the simulation and run the motor. You can then
generate PWM signals and log data from controller hardware using this model.

PMSM FOC Host

Steps:
1. Select port in Host Serial Setup,
Host Serial Receive and Debug signals
Host Serial Transmit —
2. Simulate this model (®) Speed_ref & Speed_feedback
3. Use Motor switch to control the o o —~
motor. () 1d_ref & Id_feedback
4. Run motor in open loop and observe la & Stop Start :“ Iq_ref & |q feedback
I ADC counts in scope. Compute average i -
counts for each phase and update offsets o 0 1500 L la&lb
to variables inverter CtSensAOffset and Matar —
inverter CtSensBOfiset here (Jla & Ib ADC counts
5. Use Reference Speed edit box to Open loop Closed loop Reference Speed Pos & la
update speed reference to the motor. -
Scope (Per-Unit) > [:]
Mo port Debug1 (SI units) |
selected
Debug?2 (SI units) =
Host Serial Setup Serial Communication

Copyright 2021-2022 The MathWorks, Inc.

4-234

Field-Oriented Control (FOC) of PMSM Using Hardware-In-The-Loop (HIL) Simulation

Apart from these two models, you will need an FPGA plant model (a combination of inverter and
motor equations), which you can deploy and run on the FPGA target hardware, and a Simulink®
Real-Time™ application model, which you can use to choose the target hardware and deploy the
FPGA plant model algorithms. This example uses the plant model slrt _ex pmsm.slx. The plant
model captures the PWM duty cycles provided by the controller and, in turn, runs the inverter and
motor equations to generate and send back the actual ADC voltage and position signals to the
controller hardware. You can use this plant model to generate the Simulink Real-Time (SLRT) model
and the HDL code for the FPGA target hardware. For more information, see .

Required MathWorks® Products

To simulate model:

* Motor Control Blockset™

To generate code and deploy model:
1. Motor Control Blockset™

. Simulink Real-Time™

. Embedded Coder®

= W N

. Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
. Fixed-Point Designer™ (only needed for optimized code generation)
. Stateflow®

. HDL Coder™ (required only if you are changing the plant model)

L I & W

. Speedgoat I/O Blockset
Prerequisites

1. Obtain the motor and inverter parameters. The MATLAB project uses default motor and inverter
parameters that you can replace with values from either the motor and inverter datasheets or from
other sources.

Optionally, if you have the actual motor, you can estimate the parameters for the motor that you want
to use with the motor control hardware by using the Motor Control Blockset parameter estimation
tool. For instructions, see “Estimate PMSM Parameters Using Recommended Hardware” on page 4-
189. The parameter estimation tool updates the motorParam variable (in the MATLAB workspace)
with the estimated motor parameters.

2. Update the motor and inverter parameters in the mcb_pmsm_foc f28379d_data.m parameter
script associated with the target models available in the MATLAB project. This script automatically
opens when you open the MATLAB project. You can also use the Project window to open this script
from the scripts folder.

3. Click Run on the Editor tab to run the parameter script.

Simulate Model

Follow these steps to simulate the models included in the project:

4-235

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

1. Open target model mcb_pmsm_foc f28379d.slx from the model folder included in the MATLAB
project.

2. Click Run on the Simulation tab to validate the motor operation. You can increase the simulation
speed by reducing the FPGA frequency f base to 2MHz in pmsm_hil data.m script. Observe the
simulation results. Make sure to revert f base to 200MHz before deploying to FPFA hardware.

3. Open plant model slrt_ex pmsm.slx. If you want to change the plant model, update
slrt_ex pmsm.slx. Simulate mcb_pmsm foc f28379d.s1x to verify the changes in simulation
and proceed with HDL workflow to generate the new SLRT model.

Generate Code and Deploy Model to Target Hardware

This section shows you how to generate code and run the FOC and plant model algorithms on the
controller and FPGA target hardware.

In addition to the target model, the MATLAB project uses a host model. The host model, which is a
user interface to the controller hardware board, runs on the host desktop computer. To use the host
model, you need to deploy the target model mcb pmsm foc f28379d.s1x to the controller
hardware board. The host model uses serial communication to command and interface with the

slrt ex pmsm gm.slx model to run (and control) the inverter and motor equations (HDL code that
emulates the actual plant) on the FPGA target hardware.

Generating the SLRT model is optional. You can use the slrt_ex pmsm gm.s1lx model to generate
an SLRT model to run on the host desktop computer. The SLRT model uses the Simulation Data
Inspector to collect and log the debugging data from the plant model HDL code (running on the FPGA
hardware in external mode).

Required Hardware

The example supports this hardware configuration: LAUNCHXL-F28379D controller + Speedgoat
10-334 programmable FPGA card.

Prepare Hardware

1. Connect the Speedgoat board to the LAUNCHXL-F28379D controller board as shown in this table.

Tl-LaunchXL-28379D Functionality TI-LaunchXL-28379D Pin Out 10334-21 Pin Out 10334-21 Channel Number HDL Coder Workflow Plant

EPWMI1A
EPWNMI1B
EPWM2A
EPWIM2A
EPWM3A
EPWM3E
GND

1440
1439
1438
1437
1436
1435
J2GND

051
152
2583
354
4 55
358

oo W e w

GMD

Field-Oriented Control (FOC) of PMSM Using Hardware-In-The-Loop (HIL) Simulation

2. For encoder signals, connect the Speedgoat to controller board as shown in this table.

TI-LaunchXL-28379D Functionality TI-LaunchXL-28379D Pin Ov 10334-21 Pin Out 10334-21 Channel Number HDL Coder Work Plant

CEPA ENCA CEPA ENCA 11 9 Encoder
CEPA ENCB CQEPA ENCB 1z 10

QEPA ENCIndex QEPA ENCI 13 11

GND 12 GND 9 GND

3. For analog signals, connect the Speedgoat to controller as shown in this table.

éTI-LaunchXL—ZBS?SD Functionality Tl-LaunchXL-28379D Pin Out 10334 Analog Pin Out (Port ;Wire] 10334 Analog Channel Number HDL Coder Workflow Plant

EADCINCZ 1327 RI45A01:4;2 DAC1 la
EADCINBZ 1328 RI45A01:4;6 DAC2 [Is]
EGND 13 GND RI45 A0 1:4;1/3 GND

For more details on the Speedgoat board, see Speedgoat 10-334 and Speedgoat Connection box.

For connections related to the hardware configuration, see “LAUNCHXL-F28069M and LAUNCHXL-
F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Complete the hardware connections.

2. Open the target model mcb _pmsm foc f28379d.slx. If you want to change the default hardware
configuration settings for this model, see “Model Configuration Parameters” on page 2-2.

3. To ensure that CPU2 is not configured to use the board peripherals intended for CPU1, load a
sample program to the CPU2 of the LAUNCHXL-F28379D. For example, you can load the program
that operates the CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx).

4. Check that you have updated the correct motor and inverter parameters in the parameter script
mcb _pmsm_foc f28379d data.

5. Click Build, Deploy & Start on the Hardware tab to deploy the target model
mcb _pmsm foc f28379d.s1x to the controller hardware.

6. Open the target model s1rt_ex pmsm_gm.slx. Run the model in external mode and program it

in FPGA. This will also generate the SLRT model if you have changed the plant model
slrt_ex_pmsm_gm.slx.

4-237

https://www.speedgoat.com/help/hdlcoder/page/refentry_interface_io334_front
https://www.speedgoat.com/help/hdlcoder/page/refentry_interface_io3xx_21

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-238

7. Click the host model hyperlink in mcb _pmsm foc f28379d.s1x target model to open the host
model.

You can also use the MATLAB project window to open the host model mcb _host f28379d.s1x.

8. Turn the Stop-Start slider switch available in the Simulation Dashboard area to the Start
position to allow the model to simulate and run the motor. Run the Open loop control first. Select Ia
& Ib ADC counts from Debug signals and observe the ADC counts of the phase current.

< ME N

¥ Trace Selection
R S<ial Communication/1:1 ~
5

r Measurements

ursors
erial Communication/1:1 2
Serial Communication/1:1 v

Il Lock cursor spacing
M sn data

¥ Measurements

9. Take the average value from peak to peak of the sinusoidal ADC count waveform for both Ia and Ib.
This is the current offset. Update this current offset in mcb_pmsm foc f28379d data.m for
variables inverter.CtSensAOffset and inverter.CtSensBOffset. Build and flash the
mcb_pmsm_foc f28379d.s1x model again to the controller hardware. Continue with the host model
by running the motor in a closed loop operation.

During simulation, you can turn the switch to the Stop position anytime to immediately stop the
motor.

10. In the host model, select serial port names in the Host Serial Setup, Host Serial
Receive, and Host Serial Transmit.

11. Click Run on the Simulation tab to run the host model.

12. Review the logged signals using the Simulation Data Inspector.

Field-Oriented Control (FOC) of PMSM Using Hardware-In-The-Loop (HIL) Simulation

<\ simulation Data Inspector - untitled*

Q

Inspect

<
@
Compare

Filter Signals

NAME LINE

« Run 13: gm_sirt_ex_pmsm_mcb_s...
» Signals

» Outports

06

03

M Speed_fb M SpeedRef

770 772 774 786

mlab_PU(1) mlab_PU(2)

~ Run 12: mcb_pmsm_foc_host_mo... @ :
E Debug_signals:Value —
Motor Enable:Value
.l. Archive (10) [-V
I Sine Wave:1
Speed_fb —
dl SpeedRef —
v EE Speed Control:1 (2)
B Speed Control:1(1) —
Speed Control:1(2))
* ~ Outports
U
@ thMotor —
trqMotor B
la S
Ib ———J
lc ——
.

» Run 5: gm_sirt_ex_pmsm_mcb_slr...

0.

w

o

-0

xS

R

.78 7.80 7. 7

W wMotor

4-239

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Direct Torque Control of PMSM Using Quadrature Encoder or
Sensorless Flux Observer

This example implements direct torque control (DTC) technique to control the speed of a three-phase
permanent magnet synchronous motor (PMSM). Direct Torque Control (DTC) is a vector motor
control technique that implements motor speed control by directly controlling the flux and torque of
the motor. The example algorithm needs motor currents and position feeback from PMSM. It uses
space vector pulse-width modulation (DTC-SVPWM) variant of DTC, which uses space vector
modulation (SVM) to produce the pulse-width modulation (PWM) duty cycles that are used by the
inverter. For more details about the DTC-SVPWM algorithm used in this example, see “Direct Torque
Control (DTC)” on page 4-7.

The example enables you to use either quadrature encoder sensor or sensorless flux observer to
determine the rotor position. For details about the Flux Observer Simulink® block, see Flux
Observer.

Model
The example includes the mch pmsm dtc £28379d model (target model).

You can use this model for both simulation and code generation. You can also open the Simulink®
model using this command at the MATLAB® Command Window.

open_system('mcb _pmsm dtc f28379d.slx');

Position Feedbacl Permanent Magnet Synchronous Motor - Direct Torque Control
»Quadrature Enc

HW_INT

]

Code generation

Note: This example requires a Tl F28379D LaunchPad with a BOOSTXL-DRV8305 or
BOOSTXL-3PhGaNInv booster pack connected to a PMSM Motor () initialize

Hardware Init

HW_INT - L Heartbeat LED
SCI_Rx_INT() Triggeri)

Simulation

Enable

laOffset

EnClosedLoop

Spead_ref

Debug_signals

Puosition Feedback

4-240

AL

E Speed_Rel_PU T_rel_PU Duty Cycles =%
RT
Desired Speed Trel_PU Duty Cycles Feedbacks_sim

S| speea_meas_Pu

Serial Receive Speed Control Torque Control

Feedbacks_sim Speed_fb
“ Inverter and Motor - Plant Model

Steps:

1. Edit motor & inverter parameters

2. Select type of position feedback using radio button

3. If quadrature encoder is used use Offset computation
model to find out position offset.

4. Update offset in Init script to variable
‘pmsm.PositionOffset’

5. Simulate this model and observe the results in
Simulation Data Inspector

6. Build, Deploy & Start

7. Control motor via host model

8. Learn more about this example.

Copyright 2021 The MathWorks. Inc.

For details about the supported hardware configuration, see the Required Hardware topic in the
Generate Code and Deploy Model to Target Hardware section.
Required MathWorks® Products

To simulate model:

Direct Torque Control of PMSM Using Quadrature Encoder or Sensorless Flux Observer

* Motor Control Blockset™

To generate code and deploy model:

* Motor Control Blockset™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors
* Fixed-Point Designer™ (only needed for optimized code generation)

Prerequisites

1. Obtain the motor parameters. The Simulink® model uses default parameters that you can replace
with values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189. The parameter
estimation tool updates the motorParam variable (in the MATLAB® workspace) with the estimated
motor parameters.

2. Update motor parameters. If you obtain the motor parameters from the datasheet or from other
sources, update the motor and inverter parameters in the model initialization script associated with
the Simulink® model. For instructions, see “Estimate Control Gains and Use Utility Functions” on
page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts the motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open the target model included with this example.

2, Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector in the Review Results section to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section shows how to generate code and run the DTC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. Before you can run the host model
on the host computer, deploy the target model to the controller hardware board. The host model uses

serial communication to command the target Simulink model and run the motor in closed-loop
control.

Required Hardware
The example supports this hardware configuration. You can also use the target model name to open

the model from the MATLAB® command prompt.

4-241

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-242

LAUNCHXL-F28379D controller + (BOOSTXL-DRV8305 or BOOSTXL-3PHGANINYV) inverter:
mcb pmsm_dtc £28379d

Note: When using the BOOSTXL-3PHGANINYV inverter, ensure that you have proper insulation
between the bottom layer of BOOSTXL-3PHGANINV and the LAUNCHXL board.

For connections related to this hardware configuration, see “LAUNCHXL-F28069M and LAUNCHXL-
F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. Open the target model. If you want to change the default hardware configuration settings for the
model, see “Model Configuration Parameters” on page 2-2.

4. Set the Position Feedback radio button on the target model to Quadrature Encoder if you are
using a quadrature encoder sensor to read the rotor position. Select Flux Observer if you want to
use sensorless position estimation using a flux observer.

5. Compute the quadrature encoder index offset value and update it in the pmsm.PositionOffset
variable available in the model initialization script associated with the target model. For instructions,
see “Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-80.

Note: Skip step 4 if you are using the sensorless flux observer for position estimation.

6. The model by default computes the ADC offset values for phase current measurement. To disable
this functionality, update the value of the inverter.ADCOffsetCalibEnable variable in the model
initialization script to 0.

Alternatively, you can compute the ADC offset values and update them manually in the model
initialization script. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and Calibrate
ADC Offset” on page 4-10.

7. Load a sample program to CPU2 of the LAUNCHXL-F28379D board. For example, load the
program that operates the CPU2 blue LED by using GPIO31 (c28379D cpu2 blink.slx). This ensures
that CPU2 is not mistakenly configured to use the board peripherals intended for CPU1.

8. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.
Check if the MATLAB base workspace shows the variables from the deployed target model.

9. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model.

open_system('mcb _pmsm dtc host f28379d.slx');

Direct Torque Control of PMSM Using Quadrature Encoder or Sensorless Flux Observer

Prerequisites:

PMSM Direct Torque Control Host

Debug signals

1. Deploy the target model to the hardware
mch _pmsm_dte f28379d - Speed ref & Speed f

2.The variables from the target model are

- Stap Start

loaded to the base workspace. F'Ux_ref & Flux_feedt

Steps:

Reference Speed Motor

[RPM] Torque_ref & Torque._

1. Select the port in Host Serial Setup,

Host Serial Receive and Host Serial Transmit

2. Simulate this model Signal 1 - »-
3. Use Start / Stop Motor swilch to control the No port D

motor,

4. Enter Refarence speed in RPM (limit to base

selected

Signal 2 |- >

speed) using edit box. Host Serial Setup Serial Communication Scope
5. Use the radio button to select the pair of
debug signals. Observe these signals in

Scope.

Copyright 2021 The MathWorks, Inc.

For details on serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

10. In the dialog of the Host Serial Setup block in the host model, select a Port name.

11. Click Run on the Simulation tab to run the host model.

12. Change the position of the Start / Stop Motor switch to On, to start running the motor.

13. Update the Reference Speed value (in RPM) in the host model.

14. Use the Debug signals section of the host model to select the debug signals that you want to
monitor:

Speed_ref & Speed_feedback — Display the speed reference and speed feedback signals in the
scope.

Flux_ref & Flux_feedback — Display the flux reference and flux feedback signals in the scope.

Torque_ref & Torque_feedback — Display the torque reference and torque feedback signals in
the scope.

Ia & Ib — Display the phase-|a| and phase-|b| currents in the scope.

Ia & Position — Display the phase-|a| current and rotor position signals in the scope.

15. Use the time scope available in the host model to monitor the selected debug signals.

4-243

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Determine Power Losses and THD for PWM Modulation
Methods

4-244

This example calculates the power losses and total harmonic distortion (THD) for different pulse-
width modulation (PWM) methods. The example uses field-oriented control (FOC) algorithm that runs
a permanent-magnet synchronous motor (PMSM) in speed control mode as a reference. The example
only supports simulation.

The example model simulates the PWM methods sequentially in this order:
1. SPWM — sinusoidal PWM

. SVM — space vector modulation

. 60 DPWM — 60 degree discontinuous PWM

. 60 DPWM (+30 degree shift) — +30 degree shift from 60 DPWM

2
3
4
5. 60 DPWM (-30 degree shift) — -30 degree shift from 60 DPWM
6. 30 DPWM — 30 degree discontinuous PWM

7. 120 DPWM — Positive DC component

8. 120 DPWM — Negative DC component

The model simulates each method for a fixed time period before changing the PWM method. You can
configure this time period by updating the variable Ts MethodDuration available in the model
initialization script associated with the example model. For instructions to locate the model
initialization script, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

After the simulation completes, the script mcb_InverterLossTHDExtract.m uses the simulation
data available in the MATLAB® workspace to generate the power loss in there respective switches
and current THD plots for the different PWM methods.

Note: The inverter's MOSFET used in this example are configured using the datasheet of MOSFETs
available in the Texas Instruments™ BOOSTXL-DRV8305 board.

Model
The example includes the mch inverter powerloss model.

You can use this model only for simulation. You can also open the Simulink® model using this
command at the MATLAB Command Window.

open_system('mcb_inverter powerloss.slx');

Determine Power Losses and THD for PWM Modulation Methods

PMSM Field Oriented Control

Losses in Inverter switches and Total Harmonic Distortion - Comparison between different PWM strategies

1. Edit motor & inverter parameters.
2, Simulate this model.
3. Explore function used for plotting power
loss and THD.
4. Learn more about this example. »

i

HE

L \daq_ref_PU
PWM_Mathod_Num Speed
SpeedRefPU E Speed_Raf_PU L_/fr, S B > PWMMathod
ol [=]

IdgRef_PU lab. PU Duty Cycles e Py # Duty Cycles lab

Speed_Meas_PU

HE

Thata

1

:

Pas_Mech_PU

Speed Contral m Current Control

Copyright 2021 The MathWorks, Inc.

it

Inverter and Motor - Plant Model

Required MathWorks® Products
* Motor Control Blockset™

* Simscape™ Electrical™
Prerequisites

1. Obtain the motor parameters. The Simulink® model uses default parameters that you can replace
with values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189. The parameter
estimation tool updates the motorParam variable (in the MATLAB® workspace) with the estimated
motor parameters.

2. Update the motor and inverter parameters in the model initialization script associated with the
Simulink® model. For instructions, see “Estimate Control Gains and Use Utility Functions” on page
3-2.

Update the motor parameters in the PMSM block available in the mcb_inverter powerloss/
lnverter and Motor - Plant Model/Motor subsystem of the example model. In addition,
update the parameters of the MOSFET available in mcb_inverter powerloss/lnverter and
Motor - Plant Model/lnverter/Switchl (mcb ref switchmodel) of the example model.

3. Configure the simulation time period for the PWM methods using the Ts_MethodDuration
variable available in the model initialization script associated with the example model. Ensure that

this time period is long enough for the speed control loop to stabilize and enable the motor to reach a
steady speed state.

Simulate Model
This example supports simulation. Follow these steps to simulate the model.

1. Open the model included with this example.

4-245

4

Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-246

2. Click the Simulate hyperlink (step 2) available in the Explore More section of the example model
to run the simulation. Alternatively, you can simulate the example model by clicking Run on the
Simulation tab, however, ensure that you do not interrupt the simulation process.

Note: The simulation takes few minutes to complete. If you interrupt the simulation process, the
example does not compute and plot the power loss and THD information.

After the simulation completes, the model stores the simulation data in the MATLAB workspace that
is used by the mcb _InverterLossTHDExtract.m script to extract the power loss and THD
information and plot them for the different PWM methods. After generating the plots, the script saves
the power loss and THD information in the LossTHDdata variable (in the MATLAB workspace).

3. You can also click the function hyperlink available in the Explore more section of the model, to
view the mcb_InverterLossTHDExtract.m script that computes the power loss and THD
information and generates the plots.

You can use this example to analyze and determine a suitable PWM technique for your motor control
application.

These are the examples of the plots generated by the model:

- Total Inverter Loss (Averaged over an electrical cycle)
. T T T f T | T l!

o THD of Phase Current - Phase A (Averaged over an electrical cycle)
T T ¥ T T T 7

. L i
aa\"”“wmod*‘é o "“w s et et m@“““ﬂ e

k) =] e
e RPN AIPTC: RV oo
S0 e st N N\\'ﬁ 0sP™ e e
ST S 4o ™ 0T 0 0F 0 eI oam PO e
S w8 20 ooF 0

Determine Power Losses and THD for PWM Modulation Methods

Conduction Loss
0.04 T T T T T T T

I HighSideSwitch-PhassA
I o SideSwitch-Phased

Switching Loss

0.4 7 T T T 1 T T T
i : : i : I HighSideSwitch-Phases
I Lo SideSwitch-Phassa |

Total Loss in a Switch

0.4 T T T T T
I HighSideSwitch-Phased
- LowSideSwitch-Phasef |

0 II II II II II II I I

(Watt)
=]
(%]
T

o
-
T

. \ﬁ- ?\]\JN 2
uguxd e o o\}'—’ a0 g; g ‘\\3{9‘}5 . c_o\":‘c . C’D‘:‘\
peSF e o N W '\'3 08 e gwe®
Pt S o P i EGD?\N o e o WP e
\UE 0 oOF]
PN o s A2
&0 ® 30

Note: The example algorithm averages the power loss and THD information for a PWM method over
the last electrical cycle (among a series of cycles) that runs for the PWM method.

4-247

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

Run Field Oriented Control of PMSM Using Model Predictive
Control

This example uses Model Predictive Control (MPC) to control the speed of a three-phase permanent
magnet synchronous motor (PMSM). MPC is a control technique that tunes and optimizes the inputs
to a control system to minimize the error in the predicted system output and achieve the reference
control objective over a period of time. This technique involves solving the objective function and

finding an optimal input sequence at every sample time (T'f). After each time step, the current state
of the plant is considered as the initial state and the above process is repeated.

Output setpoint

Predicted output

Output :
measurements i
of past |
Control action |
] |
Control action of past _IJ_|_|_ ! i
f ’ g
|| | Time
S R

Prediction horizon

4-248

Run Field Oriented Control of PMSM Using Model Predictive Control

Predicted Reference
Past inputs outputs trajectory
and outputs +
S

Future
inputs

Future
errors

Cost

. Constraints
function

The optimizer provides the optimal inputs to the model based on solving the objective function under
specific bounds and constraints. During Prediction step, the future response of a plant is predicted
with the help of a dynamic discrete-time model up to Np sampling intervals, which is called the
prediction horizon. During Optimization step, the objective function is solved to obtain the optimal
control inputs up to Nc sampling intervals, which is called control horizon for the predicted response.
Control horizon remains less than or equal to the prediction horizon.

w=f

(Speed™f)

Model
controller Predictive
(speed) Controller

Inverse park
transform

Park

transform

4-249

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

4-250

The example uses an MPC controller as a current controller (in a field-oriented control or FOC

algorithm) to optimize the I i and I 9 currents and change the d-axis and g-axis controller voltage
outputs so that they meet the reference control objectives over a period of time.

The objective function is derived as a linear sum of these:

[W1 * (error in output)] + [W2 * (rate of change of input)] + [W3 *
(error in input)]

where, W1, W2, and W3 are the weightages.

The example uses the model initialization script to define these weightage (or weights) of these three
parameters.

[z =10,1, =1

1. Inputs:

[I; = 0.01,1, = 0.01]

2. Rate of change of input:

Va=1,V; =1]

3. Measured Outputs:
Therefore, by default, the example gives maximum weightage to the output variables parameter

(corresponding to VFF and Vfi voltages) when calculating the error in the predicted output. You can
change the weightage values for error computation using the model initialization script available in
the example.

The example also operates the MPC inputs (J'ir il and 1) and the MPC outputs (V;F and Vfi) under the
following lower and upper bounds:

* Inputs
-1<I;<1
-1<I,<1

* Measured outputs

-0.1<V;<0.1
-1<V, <1

Note: The rate of change of input does not have any lower and upper bounds.

To retain linearity of the constraints, you can consider polytopic approximations. An acceptable trade-
off between the accuracy and number of constraints can be acheived by approximating the feasible

region using a hexagon. Because the direct component of the stator current & il is almost always very
close to zero, except during flux weakening operation when it takes negative values, you can consider

the constraint £ il is less that or equal to 0, to reduce the number of constraints.

Run Field Oriented Control of PMSM Using Model Predictive Control

Vg

0.5

-0.5

The following image shows the pictorial representation of the contraints for the MPC output voltages

(V;F and fo, with circle approximation having 6 faces), and MPC input currents (‘ilr il and I 4, with
half-circle approximation having 4 faces). You can generate these plots by using the MATLAB
command mcb_getMPCObject (pmsm,PU System,Ts current,T pwm,1).

Voltage Constraints -Circle Approximation with 6 faces

Current Constraints -Half circle approximation with 4 faces
T T

Note: The sample time (T-‘w) used in the model intitialization script of this example is based on tests
on the particular hardware. You can change the sample time for a differet kind of hardware, which
will in turn impact the MPC operation.

For more information about MPC, see “What is Model Predictive Control?” (Model Predictive Control
Toolbox).

Note: While using MPC, you may observe that the speed of the motor does not reach the maximum
value at the rated torque (it settles at around 0.87 pu). This is the expected behavior because the
linear constraints set on the MPC controller limit the actual operating points to reach the operating
points on the circle.

Models

The example includes the model mcb pmsm foc mpc gep £28379d

You can use these models for both simulation and code generation. You can also use the open_system
command to open the Simulink® models. For example, use this command for a F28379d based

controller.

open_system('mcb pmsm foc mpc qep f28379d.slx");

4-251

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

HW_INT

Code generation

HWL_INT

Simulation

Enable

laOffset

IbOffset

EnClosedLoap

SpeedRel

Debug_signals

4-252

Permanent Magnet Synchronous Motor Field Oriented Control using Model Predictive Controller
Note: This example requires a Tl F28379D LaunchPad with a BOOSTXL-DRVE305 booster pack
connected to a PMSM Motor with QEP Sensor
('J initialize

Hardware Init

Heartbeat LED

SCI_Rx_INT()

Speed_Raf_PU Idq_ref_PU Duty Cycles
Oesired Speed IdaRef_PU —|—> Duty_Cycles Feedbacks_sim —bﬁl
= Speed_Meas_PU sim_fo] > Feedbacks_sim Speed_fb
Serial Receive Speed Confrol Curmrent Control Inverter and Motor - Plant Model
Steps:

1. Edit motor & inverter parameters
2. Use Offset computation model to find
out position offset.
3. Update offset in Init script to variable
'‘pmsm.PositionOffset’
4. Build, Deploy & Start
Copyright 2021 The MathWorks, Inc. 5. Control motor via host model
6. Leam more about this example.

For the model names that you can use for different hardware configurations, see the Required
Hardware topic in the Generate Code and Deploy Model to Target Hardware section.

Required MathWorks® Products

To simulate model:

* Motor Control Blockset™
* Model Predictive Control Toolbox™

To generate code and deploy model:

* Motor Control Blockset™

* Model Predictive Control Toolbox™

* Embedded Coder®

* Embedded Coder® Support Package for Texas Instruments™ C2000™ Processors

Prerequisites

1. Obtain the motor parameters. We provide default motor parameters with the Simulink® model that
you can replace with the values from either the motor datasheet or other sources.

However, if you have the motor control hardware, you can estimate the parameters for the motor that
you want to use, by using the Motor Control Blockset parameter estimation tool. For instructions, see
“Estimate PMSM Parameters Using Recommended Hardware” on page 4-189.

The parameter estimation tool updates the motorParam variable (in the MATLAB® workspace) with
the estimated motor parameters.

2. If you obtain the motor parameters from the datasheet or other sources, update the motor
parameters and inverter parameters in the model initialization script associated with the Simulink®
models. For instructions, see “Estimate Control Gains and Use Utility Functions” on page 3-2.

Run Field Oriented Control of PMSM Using Model Predictive Control

If you use the parameter estimation tool, you can update the inverter parameters, but do not update
the motor parameters in the model initialization script. The script automatically extracts motor
parameters from the updated motorParam workspace variable.

Simulate Model

This example supports simulation. Follow these steps to simulate the model.

1. Open a model included with this example.

2. Click Run on the Simulation tab to simulate the model.

3. Click Data Inspector on the Simulation tab to view and analyze the simulation results.
Generate Code and Deploy Model to Target Hardware

This section instructs you to generate code and run the FOC algorithm on the target hardware.

This example uses a host and a target model. The host model is a user interface to the controller
hardware board. You can run the host model on the host computer. The prerequisite to use the host
model is to deploy the target model to the controller hardware board. The host model uses serial
communication to command the target Simulink® model and run the motor in a closed-loop control.

Required Hardware

This example supports this hardware configuration. You can also use the target model name to open
the model for the corresponding hardware configuration, from the MATLAB® command prompt.

* LAUNCHXL-F28379D controller + BOOSTXL-DRV8305 inverter:
mcb pmsm foc mpc gep £28379d

For connections related to the preceding hardware configurations, see “LAUNCHXL-F28069M and
LAUNCHXL-F28379D Configurations” on page 7-5.

Generate Code and Run Model on Target Hardware
1. Simulate the target model and observe the simulation results.
2. Complete the hardware connections.

3. The model automatically computes the ADC (or current) offset values. To disable this functionality
(enabled by default), update the value 0 to the variable inverter. ADCOffsetCalibEnable in the model
initialization script.

Alternatively, you can compute the ADC offset values and update it manually in the model
initialization scripts. For instructions, see “Run 3-Phase AC Motors in Open-Loop Control and
Calibrate ADC Offset” on page 4-10.

4. Compute the quadrature encoder index offset value and update it in the model initialization scripts
associated with the target model. For instructions, see “Quadrature Encoder Offset Calibration for
PMSM Motor” on page 4-80.

NOTE: Verify the number of slits available in the quadrature encoder sensor attached to your motor.
Check and update the variable pmsm.QEPS1its available in the model initialization script. This
variable corresponds to the Encoder slits parameter of the quadrature encoder block. For more
details about the Encoder slits and Encoder counts per slit parameters, see Quadrature Decoder.

4-253

4 Implement Motor Speed Control by Using Field-Oriented Control (FOC)

5. Open the target model for the hardware configuration that you want to use. If you want to change
the default hardware configuration settings for the model, see “Model Configuration Parameters” on
page 2-2.

6. Load a sample program to CPU2 of LAUNCHXL-F28379D, for example, program that operates the
CPU2 blue LED by using GPIO31 (c28379D cpu?2 blink.slx), to ensure that CPU2 is not mistakenly
configured to use the board peripherals intended for CPU1.

7. Click Build, Deploy & Start on the Hardware tab to deploy the target model to the hardware.

8. Click the host model hyperlink in the target model to open the associated host model. You can
also use the open_system command to open the host model. For example, use this command for a
F28069M based controller.

open_system('mcb pmsm foc host model f28379d.slx');

PMSM Control Host

Debug signals

Naote:

1. Select port in Host Serial Setup, Host Serial Receive and Speed ref & Speed f
Na part Host Serial Transmit — —
salactad 2. Use 'Motor Start / Slop’ switeh to contral molor.

3. Input speed request using 'Reference Speed' block Id ref & |d feedback

4, Observe the debug signals in scope.
5. Start the moter in open loop under no Iead condition and

transition to close loop for Sensoriess Example. The model |q ref & I':I feedback

works in open loop for speed ref below 0.1pu.

Host Serial Setup

Off

Scope (Per-Unit) > [:]

2000 Debug! (S units) SelectedSignals
o ' Detug2 1 urts)
n

Reference Speed (RPM) L R
Start / Stop Motor

Copyright 2020-2021 The MathWorks,

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

9. In the host model, open the blocks Host Serial Setup, Host Serial Receive, and Host Serial
Transmit, and select a Port.

4-254

Run Field Oriented Control of PMSM Using Model Predictive Control

10. Update the Reference Speed value in the host model.
11. Click Run on the Simulation tab to run the host model.
12. Change the position of the Start / Stop Motor switch to On, to start running the motor.

13. Use the Debug signals section to select the debug signals that you want to monitor. Observe the
debug signals from the RX subsystem, in the Time Scope of the host model.

References

* G. Cimini, D. Bernardini, A. Bemporad and S. Levijoki, "Online model predictive torque control for
Permanent Magnet Synchronous Motors," 2015 IEEE International Conference on Industrial
Technology (ICIT), 2015, pp. 2308-2313, doi: 10.1109/ICIT.2015.7125438.

* S. Chai, L. Wang and E. Rogers, "Cascade model predictive control of a PMSM with periodic
disturbance rejection," 2011 Australian Control Conference, 2011, pp. 309-314.

4-255

Estimate Motor Parameters Using Motor
Control Blockset Parameter Estimation
Tool

5 Estimate Motor Parameters Using Motor Control Blockset Parameter Estimation Tool

Estimate Motor Parameters Using Motor Control Blockset
Parameter Estimation Tool

5-2

Motor Control Blockset provides a parameter estimation tool that estimates the motor parameters
accurately. You can use the estimated motor parameters to simulate the motor model and design the
control system. Therefore, the simulation response of the motor model (configured with the estimated
parameters) is close to the behavior of the actual motor under test.

The parameter estimation tool can determine the parameters for both permanent magnet
synchronous motors (PMSM) and induction motors. You can use these workflows to use the
parameter estimation tool according to the type of motor and motor-control hardware that you want
to use:

+ “Estimate PMSM Parameters Using Recommended Hardware” on page 4-189

* “Estimate PMSM Parameters Using Custom Hardware” on page 4-213

* “Estimate Induction Motor Parameters Using Recommended Hardware” on page 4-206

See Also
Interior PMSM | Surface Mount PMSM | Induction Motor

Concepts

* “Host-Target Communication” on page 6-2

* “Open-Loop and Closed-Loop Control” on page 6-13

* “Current Sensor ADC Offset and Position Sensor Calibration” on page 6-17
* “Per-Unit System” on page 6-20

* “Program Control Flow of Motor Control Blockset Examples” on page 6-23

6 Concepts

Host-Target Communication

Motor Control Blockset uses a communication interface between the host model and the target model
to control the motor and observe feedback.

lVDC

Serial —mmmmmm. Dutycycles
- - > - - >
communication - - >
e < : : >
TTIIT
Host system Target device
Host Model

The host model is a user interface for the controller hardware board. Run the host model on the host
computer. Before you run the host model on the host computer, make sure to deploy the target model
on the controller hardware board.

The host model commands, controls, and exchanges data with the target hardware. You can perform
these operations using the host model available in the Motor Control Blockset:

* Find the serial communication port (COM port) in the host system. For more details, see Find
Communication Port section in this page.

* Configure the serial port and baud rate by using the Serial Setup block.

» Start or stop the motor.

* Specify the motor speed.

* View the debug or output signals that the host receives from the target by using the Time Scope
and Display blocks.

Target Model

The target model runs on the controller hardware board. Deploy the target model to the embedded
target hardware that controls the motor. The target model communicates with the host model to

6-2

Host-Target Communication

receive commands from the user (for example, the command to start or stop the motor). Some
common operations that a target model available in Motor Control Blockset performs:

* Serial communication with the host model to receive user commands and exchange binary data.
* Read data from the position and current sensors attached to the motor and inverter.

* Control motor speed and torque by running the control algorithms and processing the feedback.
* Generate duty cycle inputs for the inverter.

* Enable fast serial data monitoring for debugging the signals.

Serial Communication Blocks

The host and target models interact by using these Motor Control Blockset blocks that enable serial
communication:

* Host Serial Receive
* Host Serial Setup
* Host Serial Transmit

Using these blocks you can monitor, control, and customize the motor operation in real time. For
example, you can view the debug signals, stop or start the motor, and change the motor speed
without repeated deployment of the target model.

Fast Serial Data Monitoring

The Motor Control Blockset example models use the fast serial data monitoring algorithm, which
performs control and diagnostic operations through the host model. This algorithm enables you to
observe data from the target device at the same rate as the execution sample time (for example,
PWM frequency of 20kHz). This, in turn, helps in diagnostics and analysis of transients.

Evaluation boards often provide serial communication over USB connections that enable fast serial
transfers. The models running on the Texas Instruments™ LaunchPad hardware boards send signals
like I, and I, currents over the serial interface.

For example, consider a situation where a model needs to sample two signals A and B every 50 pus and
send them to the host model for monitoring and debugging. To fulfil this requirement, the Motor
Control Blockset examples divide the entire signal data into packets of 600 data points. Therefore, a
packet from signal A combined with a signal B packet results in 1200 data points. Using this
approach, the target hardware sequentially sends a pair of data packets (from signals A and B) to the
host model. The target further groups these packet pairs into sections. Each section begins with a
header and ends with a terminator. Following a header, the host model starts buffering the data
points until it receives a terminator, after which Simulink reads the buffered data that you can
monitor.

To read the buffered data we select Enable blocking mode and set Data size to [2 n] and Sample
time to n*50 ps in the Host Serial Receive block parameter dialog box. Using this configuration, the
Host Serial Receive block reads 2xn data points every nx50 us. We select a value for n such that the
Simulink host model can run efficiently in real time.

6-3

6 Concepts

Sample
number

6-4

0Os 50us 100ps (n-2) x 50ps (n-1) x 50us n x 50ps
B Header
I et A
I Ostas
I Terminator
time

Motor Control Blockset examples follow this approach because Simulink shows high efficiency when
processing big packets of data at low data speeds and the target hardware (used by Motor Control
Blockset) efficiently processes smaller data packets at higher data speeds.

Use the host model to receive these signals on your host computer. The Motor Control Blockset
examples implementing Field Oriented Control (FOC) algorithm for the F28379D LaunchPad use
mcb _pmsm _foc host model f28379d.slx. Examples that implement the FOC algorithm for the
F28069M targets, use mcb_pmsm_foc host model f28069m.s1x. The Motor Control Blockset
also provides other host models for the application-based examples.

Selecting COM port and baud rate

Select the appropriate COM port that matches your board in the Host Serial Setup, Host Serial
Receive, and Host Serial Transmit blocks of the host model. Adjust the baud rate for your board:

Texas Instruments LaunchPad Baud Rate
F28027 LaunchPad 3.75e6
F28069 LaunchPad 5.625e6
F28377S LaunchPad 12e6
F28379D LaunchPad 12e6

After you deploy the target model on the target device, run the host model and observe the debug

signals update at 20 kHz, on the time scope. You can use the same technique to monitor other signals
on other processors.

Note SCI A is usually connected to the FTDI chip that allows serial transfers over USB on the
LaunchPad boards, docking stations, and ISO control cards.

Find Communication Port

Use these steps to find the serial communication port in the Device Manager of Windows PC, after
you connect the target hardware to your system:

Host-Target Communication

1 Open Device Manager on your Windows PC.

2 Look for an entry under Ports (COM & LPT) titled USB Serial Port (COMX), where X is a
number. You can note down this number to configure the serial setup block in the host model.

& Device Manager — O P

File Action View Help

e T/ B HE B EX®

i Audio inputs and cutputs
» E Computer
= Disk drives
» IEg Display adapters
- DVD/CD-ROM drives
: i‘ Firmware
> @ Human Interface Devices
=3 |IDE ATA/ATAPI controllers
= Keyboards
@ Mice and other pointing devices
+ [l Monitors
» 3P Network adapters
v § Ports (COM &LPT)
ﬁ Communications Port (COM1)
. Intel(R) Active Management Technology - SOL (COM3)
I # XD5100 Class USB Serial Port (COM3) I
» = Print queues
3 n Processors
» WY Security devices
B Software devices
» B Sound, video and game controllers
S Storage controllers
> @ System devices
w [Texas Instruments Debug Probes
B XDS100 Class Auxiliary Port
B XD5100 Class Debug Port
§ Universal Serial Bus controllers
w B Universal Serial Bus devices

§ BillBoard Device

If you face difficulty in finding the COM port, follow these steps to determine the COM port:

Open Device Manager on your Windows PC.

2 Look for an entry under Ports (COM & LPT) titled USB Serial Port (COMX), where X is a
number. If there are multiple COM ports, you can disconnect and reconnect the C2000 board and
observe the updates in Device Manager to determine the COM port.

3 Alternatively, follow these steps to determine the correct port name for the connected target
hardware:

a Right-click a communication port and click Properties.

6-5

6 Concepts

b In the Details tab, select Hardware Ids property.

¢ Ifthe port indicates the following IDs, the communication port belongs to the connected TI's
C2000™ controller hardware board:
* VID: 0403
* PID: A6DO

4 Ifyou do not see or find the right port in Ports (COM & LPT), navigate to Texas Instruments

Debug Probes and follow these steps:

a Right-click XDS100 Class Auxiliary Port Properties and select Properties. Navigate to
Advanced tab and select Load VCP.

b Right-click XDS100 Class Debug Port Properties and select Properties. Navigate to
Advanced tab and clear Load VCP.

¢ Disconnect and reconnect the USB cable to the system and observe the updates in Device
Manager to determine the COM port. The system now displays the COM port that belongs to
the connected TI's C2000 controller hardware board.

Tip VCP stands for Virtual COM Port (for devices that support serial over USB communication).

6-6

Host-Target Communication

i Device Manage — O
File Action View Help

o mE HE B REXE

& Display adapters A
e DVD/CD-ROM drives
Human Interface Devices ADS100 Class Auwxaliary Port Properties
== |DE ATASATAPI controllers
I Jungo Connectivity General Advanced Power Management Driver Details Everts
Keyboards
[l Mice and other pointing devices Hah XDS100 Class Auwliary Port
[Monitors
I? Metwork adapters
~ [Ports (COM & LPT)
ﬁ Communications Port (COM1)
ﬁ Intel(R) Active Management Technology - SOL (COM3)
i XDS100 Class USB Serial Port (COM21) [] Load vCP
= Print queues
] Processors
B Security devices
[Sensors
B Software devices
i Sound, video and game controllers

Configuration

Use these settings to ovenide nomal device behaviour.

Enable Selective Suspend

=

&y Storage controllers
i3 System devices
w [Texas Instruments Debug Probes
| L&l XD5100 Class Auxiliary Port |
L& XDS100 Class Debug Port
i Universal Serial Bus controllers

Cancel Help

5 If Texas Instruments Debug Probes do not appear in the Device Manager, expand Universal
Serial Bus controllers in the Device Manager and follow these steps:

a Right-click TI XDS 100 Channel B and select Properties. Navigate to Advanced tab and
select Load VCP.

b Right-click TI XDS 100 Channel A and select Properties. Navigate to Advanced tab and
clear Load VCP.

¢ Disconnect and reconnect the USB cable to the system and observe the updates in Device
Manager to determine the COM port. The system now displays the COM port that belongs to
the connected TI's C2000 controller hardware board.

6 If Device Manager does not detect the target hardware, follow these steps:

a Check that the target hardware is connected to the system.

b Check if the device drivers are installed correctly. Generally, device drivers are installed with
the Code Composer Studio™ (CCS). Check if the CCS software is installed on your system.
Alternatively, try re-installing the device drivers suggested by Texas Instruments.

¢ Check if the serial connection cable is intact.

d If the problem persists, try connecting the hardware to another system and check if Device
Manager detects the hardware.

6 Concepts

6-8

e Ifyou still face the problem, the target hardware may be faulty.

Add Debug Signals from Target Hardware

The host models included in the Motor Control Blockset examples provide a list of signals in the

Debug signals section. You can select these signals and monitor them using the time scope available
on the host model for debugging purposes.

Debug signals
Speed_ref & Speed_feedback
Id_ref & Id_feedback
lg_ref & Ig_feedback
la&lb
® |a & Position

[

Debug1 (SI units) @ SelectedSignals
Scope
Debug?2 (Sl units) @

Rux

Scope (Per-Lnit)

h J

You can only add a pair of debug signals to this section at one time. Alternatively, you can modify the
existing item in the list (for example, Speed_ref & Speed_feedback) to show the signals that you

want. However, this procedure explains how to add a new pair of debug signals to the Debug signals
section.

1 Double-click the Debug signals radio button to open the block parameters dialog box. Add a new
state value (for example, 6 - Id ref PU & Iq ref PU) to the existing list.

Host-Target Communication

Radia Button

Select value to tune parameters or variablas,

Main Format
[Enumerated Data Type:
Group Mame: |Debug signals
Label: Hide i
| Stales:
IRE Speed_ref & Speed_fee [:’
M2 Id_ref & Id_leedback . |
3 lq_ref & lq_feedback
4 la & Ib
5 la & Pasition

Q oK Cancel Help Apply |
2 Open the block parameters dialog box of the Debug_signals constant block available in the TX
subsystem of the host model. Set the constant to the new state value that you added in step 1 (for
example, change the value 5 to 6).
Fal _host_model_ >|5Jn< » |
2000 —o|+<- P Ereed) o
Reference Speed (RPM)
0
Mator Enable
P Enable_PIAbA
Data
Debug_signals
Parze
[
Dabug_signals
3 Open the target model associated with the host model and open the Current Control/
Debug signals subsystem.
4

Add two more inputs to the mux block highlighted in the following figure:

6-9

6 Concepts

i&‘ 4 EICurrent Control ¥ [Pa) Debug_signals

[

¥ [Ba| Current Control » [Pa| Debug_signals

Speed_rel >

lab_FU

ldg_debug

Position Ui

5 Open the block parameters dialog box of the Selector block and set the Input port size

parameter value to the number of inputs now available in the mux (for example, change the value
from 9 to 11).

A E| Block Parameters: Selector

bt
/
/| Selector
,rf Select or reorder specified elements of a multidimensional input signal.
;,r’ The index to each element is identified from an input port or this dialog.
P You can choose the indexing method for each dimension by using the
/ "Index Option" parameter.
/
ff"r Parameters
f}, Number of input dimensions: |1 |
/ .
/ Index mode: One-based il
> U
¥ » 1)
»ldx1, Debug_signal Index Option Index Qutput Size
Selector 1 |Index vector (port) = |from port <Id... Inherit from p
\
h
\\
N
\\
N
A
L
s
Y < >
\\ _
% Input port size: |11 | H
,
\
ANE? Cancel Help Apply

6 Connect the new signals (for example, Id ref PU and Iq ref PU) to the new mux ports that you
added in step 4.

6-10

Host-Target Communication

Spead_ref

ldg_ref PU
Inport

Ig_raf_PU
Demux

7 Open the block parameter dialog box of the Multiport Switch block and set the Number of data
ports parameter to the number of debug signal pairs now available in the host model (for
example, change the value from 5 to 6).

J_{/'/ [*al Block Parameters: Multiport Switch x
g Multi-Port Switch
Pass through the input signals corresponding to the truncated value of
ebug_signal > the first input. The inputs are numbered top to bottom (or left to right).
- The first input port is the control port. The other input ports are data
1 ports.
[I- :‘] " “ " .
e Main Signal Attributes
[s 6] o2 Data port order: One-based contiguous &
d_cantral Number of data ports:
[7 2] - 3 |6
I_cantrol Data port for default case: Last data port i
5w 4
[s4] " Diagnostic for default case: Warning ™
lab
[3 2] s
la_Pos MultiPoriSwitch
\\‘
: M Q9 Cancel Help Apply
8 Add a constant block having a vector value that indicates the new signal positions on the mux

(for example, use the vector [10, 11] for the mux inputs that you added in step 4). Connect this
constant block to the newly added port on the Multiport Switch block.

6-11

6 Concepts

6-12

ldx1

bebug_signal -
[12] »
speed_control
[s¢] »-
Id_contral
[7¢] .
Ig_contral
[=4] -
lab
[=9] ME
la_Pos
L?
[0 11] MultiPartSwitch
Id_rel PU & lg_ral PU
Constant

v 1

Selector

Debug_signal

Open-Loop and Closed-Loop Control

Open-Loop and Closed-Loop Control

Speedref

This section describes the open-loop and closed loop motor control techniques.

Open-Loop Motor Control

Open-loop control (also known as scalar control or Volts/Hz control) is a popular motor control
technique that you can use to run any AC motor. This is a simple technique that does not need any
feedback from the motor. To keep the stator magnetic flux constant, we keep the supply voltage
amplitude proportional to its frequency.

VTE
 emme VOlts-by-Hertz f anc

Duty Cycles
Ref)
SPET‘ZC' T :
-—p
Freg®ef Generator [

Position 0,

L
Generator

Motor

This figure shows an open-loop control system. The power circuit consists of a PWM voltage fed
inverter supplied by a DC source. The system does not use any feedback signal for control
implementation. It uses the reference speed to determine the frequency of the stator voltages. The
system computes the voltage magnitude as proportional to the ratio of rated voltage and rated
frequency (commonly known as Volts/Hz ratio), so that the flux remains constant.

Am o VS/fS
where:

1 A, is the rated flux of the motor in Wh.
2 V,is the stator voltage of the AC motor in Volts.
3 fsis the frequency of the stator voltage of the AC motor in Hz.

In an open-loop system, the speed for an AC motor is expressed as:

60 x fg
p

where:

6-13

6 Concepts

6-14

¢ Speed(rpm) is the mechanical speed of the AC motor in rpm.
* fsis the frequency of the stator voltage and currents of the AC motor in Hz.
* pis the number of pole pairs of the motor.

You can use the preceding expression to determine the frequency of reference voltages for a required
speed (for a given machine).

fref R RPMre]c
- 60

Use this frequency to generate PWM reference voltages for the inverter. Compute the magnitude of
voltages by maintaining Volts/Hz ratio as:

V
yref = (rated)fref

frated

When using the per-unit system representation, the open-loop control system considers Vi ,.q as the
base quantity, which usually corresponds to 1PU or 100% duty cycle. Depending on the modulation

technique (either Sinusoidal PWM or Space Vector PWM), you may need an additional gain ((%) for

sinusoidal PWM). At lower speeds, the system needs a minimum boost voltage (15% or 25% of the
rated voltage) to overcome the effect of the stator resistance voltage drop.

You can use open-loop control in applications where dynamic response is not a concern, and a cost-
effective solution is required. Open-loop motor control does not have the ability to consider external
conditions that can affect the motor speed. Therefore the control system cannot automatically correct
the deviation between the desired and the actual motor speeds.

Note Scalar control implementation does not consider compensating voltage drop due to stator
resistance and field weakening.

Closed-Loop Motor Control

Closed-loop control takes the system feedback into consideration for control. Closed-loop control of
the motor considers the feedback of motor signals like current and position. The control system uses
the feedback signals to regulate the voltage (applied to the motor) to keep the motor response at a
reference value.

Open-Loop and Closed-Loop Control

Pl controller Pl controller

ref
ref o w >
SpeEd (speed) (currentlq)

Duty Cycles
h Pl controller Inverse park Space vector
15*'=0 (current Id) transform generator

GELS Clarke
transform transform

Sine-cosine
lookup

Wy Speed 6, 6 Sensor Position
measurement decoder Feedback

Field-Oriented Control (FOC) (or vector control) is a popular closed-loop system that is used in motor
control applications. The FOC technique is used to implement closed-loop torque, speed, and position
control of motors. This technique also provides good control capability over the full torque and speed
ranges. The FOC implementation needs transformation of stator currents from the stationary
reference frame to the rotor flux reference frame.

Speed control and torque control are the commonly used control modes in FOC. The position control
mode is less commonly used. Most traction applications use the torque control mode in which the
motor control system follows a reference torque value. In the speed control mode, the motor
controller follows a reference speed value and generates a torque reference for torque control that
forms an inner subsystem. Whereas, in the position control mode, the speed controller forms the
inner subsystem.

You need real-time feedback of the current and rotor position to implement the FOC algorithm. You
can use sensors to measure the current and the rotor position. You can also use sensorless techniques
that use estimated feedback values instead of the actual sensor-based measurements.

Closed-loop control uses the real-time position and stator current feedback to tune the speed
controller and the current controller and change the duty cycles of the inverter. This ensures that the

corrected three-phase voltage supply (that runs the motor) corrects the motor feedback deviation
from the desired value.

Open-Loop to Closed-Loop Transitions

Some applications require the motor to start using an open-loop control. Once the motor achieves the
minimum required stability in open-loop control, the control system shifts to closed-loop.

In a quadrature encoder-based position sensing system, the motor starts up in open-loop and
transitions to closed-loop once the index pulse is detected.

6-15

6 Concepts

In sensorless position control, the motor starts running at 10% of the base speed in the open-loop.
After the reference switch goes beyond 10% of the base speed, the control system transitions from

open-loop to closed-loop.

To ensure smooth transition from open-loop to closed-loop, the PI controllers reset and start from the
same initial condition as the open-loop outputs.

6-16

Current Sensor ADC Offset and Position Sensor Calibration

Current Sensor ADC Offset and Position Sensor Calibration

This section explains about analog to digital controller (ADC) and position sensor offset calibration.

Current Sensor ADC Offset Calibration

In an inverter, signal conditioning for the current sensor introduces an offset voltage in the ADC input
to measure both positive and negative current. This offset value is different for each target hardware
because it depends on the tolerances of the components in the signal sensing and conditioning
circuit. It is recommend that you measure the current sensor ADC offset for the target hardware.
Current sensor ADC offset is represented in ADC counts that correspond to zero ampere current.

See the example “Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset” on page 4-
10 to manually measure the ADC offset value. In the Motor Control Blockset examples, update the
measured value in the inverter.CtSensAOffset and inverter.CtSensBOffset variables in the
model initialization script. By default, the script updates the inverter.CtSensAOffset and
inverter.CtSensBOffset variables with the default values.

The examples in Motor Control Blockset calculate the current sensor ADC offset in the hardware
initialization subsystem. In the model initialization script, when you set
inverter.ADCOffsetCalibEnable = 1, the script enables the current sensor offset calibration in
the target hardware during initialization. In the hardware initialization subsystem, ADC channels
read the input current multiple times and averages them. The current controller uses this averaged
ADC offset value. In the model initialization script, when you set
inverter.ADCOffsetCalibEnable = 0, the script disables the current sensor offset calibration
and uses the values from the initialization script.

Note Always measure the current sensor ADC offset when the motor is not running. It is
recommended that you unplug the electric wires connected to the motor.

Position Sensor Offset Calibration for Quadrature Encoder and Hall
Sensor

The controller requires the position sensor offset computation to determine accurate real-time
feedback of the rotor position and implement the Field-Oriented Control (FOC) algorithm correctly. It
is recommended that you use the examples for offset calibration to compute the position offset before
running any other example that uses FOC.

Hall sensor offset is the angle between the d-axis of the rotor and the position detected by the Hall
sensor. You can use the offset to correct and compute an accurate position of the d-axis of the rotor.

Quadrature encoder sensor offset is the angle between the d-axis of the rotor and the encoder index
pulse position detected by the quadrature encoder.

Motor Control Blockset offers examples like “Quadrature Encoder Offset Calibration for PMSM
Motor” on page 4-80 and “Hall Offset Calibration for PMSM Motor” on page 4-71 to obtain the
accurate rotor position for implementing the control algorithm. The offset computation examples use
a unique algorithm along with open-loop control to compute the position offsets of the position
sensors (Hall or quadrature encoder). Open-loop control (also known as scalar control or volt/Hz
control) is a popular motor control technique that can be used to run any AC motor. This is a simple

6-17

6 Concepts

technique that does not need any feedback from the motor. To ensure a constant stator magnetic flux,
keep the supply voltage amplitude proportional to its frequency. This figure shows an overview of the
open-loop control. See “Open-Loop and Closed-Loop Control” on page 6-13 for more details.

Speedrf
R ——

Volts-by-Hertz

Speed®ef
To
Freq

fiap PWM

Generator

Ref
Position
Generator 2

'e_openloop

Offset
e_feedback M Computations

0
Motor (No Load)
6 Sensor Position
decoder i Feedback

By using this algorithm, the offset calibration examples detect the position offset in this manner:

6-18

Check if the motor is in a no-load condition.

Start and run the motor in open-loop at a very low speed (for example, 60rpm). At a low speed, the
rotor d-axis closely aligns with the rotating magnetic field of the stator.

Measure the feedback position of the available position sensor (Hall or quadrature encoder).

Compare the open-loop position with feedback position and check that the phase-sequence is
correct. If required, correct the motor phase-sequence.

Compute the Hall sensor position offset by obtaining the difference between the open-loop
position and feedback position.

Run the motor in the open-loop for few cycles and stop the motor. Ensure that the encoder index
pulse is detected at least once. Lock the rotor in the d-axis. The quadrature encoder position offset
is identical to the position feedback. This outputs the quadrature encoder mechanical offset
position.

Current Sensor ADC Offset and Position Sensor Calibration

P

m_open_loop

m_pmsm

4

m_position_sensor

'osition Offset i 1y 1:

This figure shows the comparison of open-loop position from the control algorithm along with the
actual position of the motor. The figure also shows the feedback from the position sensor. The position
offset, which is the difference between the open-loop position and feedback position from the sensor,
is computed by the algorithm provided in the offset calibration models.

* Update the measured offset in the pmsm.PositionOffset variable in the model initialization
script of the examples.

* For parameter estimation, update the measured Hall offset in the Hall Offset field of the
mcb _param _est host read model.

Note The “Hall Offset Calibration for PMSM Motor” on page 4-71 example outputs the electrical
position offset. Whereas, the “Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-80
example outputs the mechanical position offset.

For steps to compute the offsets, see these examples:
“Quadrature Encoder Offset Calibration for PMSM Motor” on page 4-80
“Hall Offset Calibration for PMSM Motor” on page 4-71

“Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset” on page 4-10

6-19

6 Concepts

Per-Unit System

6-20

Motor Control Blockset uses these International System of Units (SI):

Quantity Unit Symbol
Voltage volt Vv
Current ampere A
Speed radians per second rad/s
revolutions per minute rpm
Torque newton-meter N.m
Power watt W

Note The SI Unit for speed is rad/s. However, most manufacturers use rpm as the unit to specify the
rotational speed of the motors. Motor Control Blockset prefers rpm as the unit of rotational speed
over rad/s. However, you can use either value based on your preference.

Per-Unit System

The per-unit (PU) system is commonly used in electrical engineering to express the values of
quantities like voltage, current, power, and so on. It is used for transformers and AC machines for
power system analysis. Embedded systems engineers also use this system for optimized code-
generation and scalability, especially when working with fixed-point targets.

For a given quantity (such as voltage, current, power, speed, and torque), the PU system expresses a
value in terms of a base quantity:

expressed in SI units
base value

quantity expressed in PU = quantity

Generally, most systems select the nominal values of the system as the base values. Sometimes, a
system may also select the maximum measurable value as the base value. After you establish the base
values, all signals are represented in PU with respect to the selected base value.

For example, in a motor control system, if the selected base value of the current is 10A, then the PU
representation of a 2A current is expressed as (2/10) PU = 0.2 PU.

Similarly,

quantity expressed in SI units = quantity expressed in PU x base value

For example, the SI unit representation of 0.2 PU = (0.2 x base value) = (0.2 x 10) A.

Per-Unit System and Motor Control Blockset

Motor Control Blockset uses these conventions to define the base values for voltage, current, speed,
torque, and power.

Per-Unit System

Quantity Representation Convention

Base voltage Viase This is the maximum phase
voltage supplied by the inverter.

Generally, for Space Vector
PWM, it is

PU System.V base = .
(inverter.V dc)
V3
For Sinusoidal PWV, it is
PU System.V base = .

(inverter.V dc
2

Base current Lhase This is the maximum current
that can be measured by the
current sensing circuit of the
inverter.

Generally, but not necessarily, it
is I .x Of the inverter.

PU System.I base = inverter.I max

Base speed Npase This is the nominal (or rated)
speed of the motor. This is also
the maximum speed that the
motor can achieve at the
nominal voltage and nominal
load without a field-weakening
operation.

Base torque Thase This torque is mathematically
derived from the base current.
Physically, the motor may or
may not be able to produce this
torque.

Generally, it is

PU System.T base = %
x pmsm.p X pmsm.FluxPM

x PU System.I base

6-21

6 Concepts

6-22

Quantity

Representation

Convention

Base power

Pbase

This is the power derived by the
base voltage and base current.

Generally, it is
PU System.P base = %

x PU System.V base

x PU System.I base

where:

* V,.is the DC voltage that you provide to the inverter.

* I .a is the maximum current measured by the ADCs connected to the current sensors of the

inverter.

* pis the number of pole pairs available in the PMSM.
* FluxPM is the permanent magnet flux linkage of the PMSM.

* pmsm is the MATLAB workspace parameter structure that saves the motor variables.

* inverter is the MATLAB workspace parameter structure that saves the inverter variables.
* PU System is the MATLAB workspace parameter structure that saves the PU system variables.

For the voltage and current values, you can generally consider the peak value of the nominal
sinusoidal voltage (or current) as 1PU. Therefore, the base values used for voltage and current are

the RMS values multiplied by /2, or the peak value measured between phase-neutral.

You can simplify your calculations by using the PU system. Motor Control Blockset uses these base
value definitions for the PU-system-related conversions performed by the algorithms used in the
toolbox examples. The toolbox stores the PU-system-related variables in a structure called

PU System in the MATLAB workspace.

Why Use Per-Unit System Instead of Standard Sl Units

Per-unit representation of signals has many advantages over the SI units. This technique:

* Improves the computational efficiency of code execution, and therefore is a preferred system for

fixed-point targets.

* Creates a scalable control algorithm that can be used across many systems.

Program Control Flow of Motor Control Blockset Examples

Program Control Flow of Motor Control Blockset Examples

This section describes the control flow of the field-oriented control (FOC) algorithm that the Motor
Control Blockset examples use. The control flow operates using the hardware events along with the
triggered software and hardware interrupts. This figure describes the interactions between the
hardware modules and software subsystems.

4 ADC trigger ADC trigger
! i
i ' PWM
PWM ! ,
0 , counter
counter i)
| period
; > Software triggered
< ': Desired speed
PWM time period <
Speed Control
Measured motor speed
Id and Iq reference
ADC - PWM synchronized
Duty ratios ADC EOC interrupt v Duty ratios
(from Current Control) ADC SOC trigger [N - - — - - - - — - - ——— - > QUi (to PWM)
N pwv R >
> Control
Currents from motor A
(in counts)
Measured currents Measured
from motor motor position —> Data
------ + Event orinterrupt

- Hardware peripheral
- Software subsystem

The FOC based examples generally use the data speed of 20KHz for the Current Control triggered
software subsystem. Similarly, the examples use the data speed of 2KHz for the Speed Control
triggered software subsystem. The ADC end of conversion (EOC) interrupt (a hardware interrupt)
triggers the current control subsystem. The PWM-ADC synchronization controls the rate of this
trigger. Similarly, a software interrupt triggers the speed control subsystem.

The entire system uses external inputs for motor position, motor speed, motor currents, and the
desired motor speed. The preceding figure shows the interactions between these data points and the
enclosed subsystems.

Motor Control Blockset provides the “Algorithm-Export Workflows for Custom Hardware” on page 4-
187 example that includes Simulink models for current control and speed control systems. The
example provides instructions to generate code for these models. To create a FOC algorithm that can
run on any motor control hardware, integrate this generated code with the hardware peripheral code
(either auto-generated or manually written). Ensure that you activate the Current Control and
Speed Control systems at appropriate times for the prescribed time intervals as shown in the
preceding figure.

The following figure shows the entire structure of the integrated code.

6-23

6 Concepts

Global variables and buffers

Hardware initialization

Peripheral initialization

SL model initialize

Main function (infinite loop)

User-generated
ADC EOC 20KHz interrupt — Current control step function (or manually coded) code

Timer based 2KHz interrupt — Speed control step function - Simulink-generated code

PWM

counter

Lower leg
PWM

6-24

ADC-PWM Synchronization

The interaction between the PWM and ADC modules controls the rate of triggering of the Current
Control subsystem. To reduce harmonics in the system, the PWM counter runs in center-aligned or
up-down mode. We configure the PWM such that when PWM counter reaches the PWM counter
period value, it triggers the ADC start of conversion (SOC) event. This ensures that the currents
available at the ADC inputs are updated currents, and therefore, helps to measure the ADC currents
correctly. Usually when you use shunt current sensors to measure the motor currents, the current-
sense resistor is located on the lower legs of the inverter. Therefore, triggering the ADC SOC in the
middle of the PWM period ensures that settled current values (No switching transients) are
measured. This figure shows this interaction.

. ADC Trigger ADC Trigger ADC Trigger

PWM

i i I
1 1 I
[} [} |
i i I
[} [} |
i i I
1 1 I
I I |

Counter

Period

2
L

F Y
¥

50 us

L 4

Program Control Flow of Motor Control Blockset Examples

Motor Speed and Position Measurement

The FOC algorithm needs current position and speed of the motor. Usually either the position sensors
or the sensorless estimation techniques help determine these values. The choice of the position
sensing method depends on the factors such as cost, available space, required accuracy, and the
motor control application itself. Motor Control Blockset supports these position sensing methods.

¢ Position sensors:

* Quadrature encoder sensor
* Hall sensor
* Resolver
* Sensorless position estimation techniques:

+ Sliding mode observer
* Flux observer

Serial Communication
Motor Control Blockset FOC examples use serial communication protocols for providing commands to

the motor and reading debugging-related information from the motor control hardware. For details
about this protocol, see “Fast Serial Data Monitoring” on page 6-3.

6-25

Hardware Connections

7 Hardware Connections

Hardware Connections

7-2

Motor Control Blockset supports the following hardware configurations:

F28069 control card configuration
LAUNCHXL-F28069M configuration
LAUNCHXL-F28379D configuration
C2000 MCU Resolver Eval Kit [R2]

A W N -

F28069 control card configuration

The configuration includes the following hardware components:

* Texas Instruments DRV8312-69M-KIT inverter board

» Texas Instruments F28069 microcontroller control card

* Motor BLY171D (supports both Hall and quadrature encoder sensors)
* Motor BLY172S (supports Hall sensor)

* Quadrature encoder

* DC power supply

Note Due to auxiliary power supply related hardware issues, the DRV8312-69M-KIT does not support
the position sensors connected to some motors (for example, Teknic M-2310P motor).

The following steps describe the hardware connections for the F28069 control card configuration:

1 Connect the F28069 control card to J1 of DRV8312-69M-KIT inverter board.
2 Connect the motor three phases, to MOA, MOB, and MOC on the inverter board.
3 Connect the DC power supply (24V) to PVDDIN on the inverter board.

Warning Be careful when connecting PVDD and GND to the positive and negative connections of the
DC power supply. A reverse connection can damage the hardware components.

Hardware Connections

From
QEP

Hall

J8

g L
indék 3 / 2% P ™R

. e @- { m-wpie
U-pee-1ET & : -

VRI =
& c7 Wi =8

MOTOD
Vel] — To
Vel M | motor

MOA

DC
power
supply

DRV8312EVM
‘6517813 RevD

The following step describes about interfacing the quadrature encoder sensor:
* Connect the quadrature encoder pins (G, I, A, 5V, B) to J4 on the inverter board.

To implement position-sensing by using Hall sensor, use a motor that has inbuilt Hall sensors (for
example, BLY171D and BLY172S). The following steps describe the steps to interface the Hall sensor:

* Connect the Hall sensor encoder output to J10 on the inverter board.

7 Hardware Connections

14

J10

Lt nge el it e Shioe

ENC A
ﬁ

encs | Quadrature

ENCI] encoder

l (Color codes of

OVDC B connectors may vary)

| PR SO | T PRTRR [

DRV8312-69M-KIT inverter

We recommend the following jumper settings for DRV8312-69M-KIT inverter board when working
with Motor Control Blockset. You can customize these settings depending on the application
requirements. For more information about these settings, see the device user guide available on
Texas Instruments website.

L]

JP1 - VR1
JP2 - ON
JP3 - OFF
JP4 - OFF
JP5 - OFF
M1-H

J2 - OFF

J3 - OFF
RSTA - MCU
RSTB - MCU

Hardware Connections

RSTC - MCU

LAUNCHXL-F28069M and LAUNCHXL-F28379D Configurations

The LAUNCHXL-F28069M configuration includes the following hardware components:

LAUNCHXL-F28069M controller

BOOSTXL-DRV8305 (supported inverter)

Teknic motor M-2310P (supports both Hall and quadrature encoder sensors)
Motor BLY171D (supports both Hall and quadrature encoder sensors)
Motor BLY172S (supports Hall sensor)

DC power supply

The LAUNCHXL-F28379D configuration includes the following hardware components:

LAUNCHXL-F28379D controller

BOOSTXL-DRV8305 and BOOSTXL-3PHGANINV (supported inverters)
Teknic motor M-2310P (supports both Hall and quadrature encoder sensors)
Motor BLY171D (supports both Hall and quadrature encoder sensors)
Motor BLY172S (supports Hall sensor)

DC power supply

The following steps describe the hardware connections for the LAUNCHXL-F28069M and
LAUNCHXL-F28379D configurations:

1

Attach the BOOSTXL inverter board to J1, J2,]J3, J4 on the LAUNCHXL controller board.

Note Attach the inverter board to the controller board such that J1, J2 of BOOSTXL aligns with
J1,]2 of LAUNCHXL.

Connect the motor three phases, to MOTA, MOTB, and MOTC on the BOOSTXL inverter board.
Connect the DC power supply (24V) to PVDD and GND on the BOOSTXL inverter board.

Warning Be careful when connecting PVDD and GND to the positive and negative connections of the
DC power supply. A reverse connection can damage the hardware components.

7-3

7 Hardware Connections

BOOSTXL-
DRV8305EVM

From
Quadrature
~" Encoder

From
-~ Hall
(GPIO)

LaunchPad XL

c2000

BOOSTXL-
DRV8305EVM

Hardware Connections

DC power supply
5 3 o To motor

v

pUDD MOTA® MOTB MOTC
a4 0205 By

g
L%

= Ciu Ci7
. R4 .lmfi = DRUS305

g T

gi; rHlH)HIH!1 Lol tad bt
o1 C7wxt C13 C14 C16.
R13 cef |

€22 C2uy
R1é @ |

c23R2Ccalk | - 4

‘- ?12: Ll -‘Csdlllllililll nFﬁULT

- RI8 — s 15
Cc25
R1S

L o L
C R

il
T

up-K

n)y piTy pUEAY FUOF
‘ : i

b o= | L:J R1 R3 R7 M (D1
S 1|
A c2s

| JiEd

|
€ ¢
€ ¢
€ ¢
¢ ¢
¢ ¢
€ 4«
€ ¢
€ ¢
€ ¢

MDBUOO3A
BOOSTXL-DRUB30SEUH

The following step describes about interfacing the quadrature encoder sensor:

* Connect the quadrature encoder pins (G, I, A, 5V, B) to QEP_A on the LAUNCHXL controller
board.

To implement position-sensing by using Hall sensor, use a motor that has inbuilt Hall sensors (for
example, Teknic motor M-2310P, BLY171D and BLY172S). The following steps describe the steps to
interface the Hall sensor:

* Connect the Hall sensor encoder output to a GPIO port that is configured as eCAP, on the
LAUNCHXL controller board.

7-7

7 Hardware Connections

QEP A

|

QEP_B
I__1__f|__T_—I__1

ENC A

ﬁ
ﬂ: Quadrature
ENCI] encoder

1 {Color codes of

+ovDC connectors may vary)
1

GND

< ENCA
e

ENCB I
_I

enct 1 Quadrature

QEP_A

I encoder
+5VDC

T e s e |

| e Ve L R b |

QEP_B
et G e e ez

J10

LAUNCHXL-F28069M or LAUNCHXL-F28069M or

LAUNCHXL-F28379D controller LAUNCHXL-F28379D controller

We recommend the following jumper settings for the LAUNCHXL inverter boards when working with
Motor Control Blockset. You can customize these settings depending on the application requirements.
For more information about these settings, see the device user guide available on Texas Instruments
website.

For LAUNCHXL-F28069M controller

+ JP1-ON
+ JP2-ON
« JP3-ON
« JP4-ON
+ JP5-ON
« JP6 - OFF
+ JP7-ON

For LAUNCHXL-F28379D controller

« JP1-ON
« JP2-ON
+ JP3-ON
+ JP4-ON
« JP5-ON
« JP6 - OFF

Hardware Connections

Instructions for Dyno (Dual Motor) Setup

1

Connect the three phases of Motorl and Motor2, to MOTA, MOTB, and MOTC on the
corresponding BOOSTXL inverter boards.

Attach the BOOSTXL inverter board (connected to Motorl) to J1, J2, J3, J4 on the LAUNCHXL
controller board.

Note Attach the inverter board to the controller board such that J1, J2 of BOOSTXL aligns with
J1,]2 of LAUNCHXL.

Attach the BOOSTXL inverter board (connected to Motor2) to J5, J6, J7,]J8 on the LAUNCHXL
controller board.

Note Attach the inverter board to the controller board such that J1, J2 of BOOSTXL aligns with
J5, J6 of LAUNCHXL.

Connect the DC power supply (24V) to PVDD and GND on both BOOSTXL inverter boards.

Note Connect the PVDD and GND on the BOOSTXL boards (for MOTOR1 and MOTOR?2) to the
same power supply. When one motor consumes power, the second motor generates power. If you
connect both motors to the same power supply, the power generated by one motor is consumed
by the other motor. The DC power supply delivers power only for the losses.

Connect the quadrature encoder pins of Motorl (G, I, A, 5V, B) to QEP_A on the LAUNCHXL
controller board.

Connect the quadrature encoder pins of Motor2 (G, 1, A, 5V, B) to QEP_B on the LAUNCHXL
controller board.

Warning Be careful when connecting PVDD and GND to the positive and negative connections of the
DC power supply. A reverse connection can damage the hardware components.

7 Hardware Connections

BOOSTXL-DRV8305EVM BOOSTXL-DRV8305EVM
(Motorl) (Motor2)

From
Quadrature
~ Encoder of
Motorl

From
Quadrature
“ Encoder of
Motor2

LaunchPad XL

C2000

BOOSTXL-DRV8305EVM BOOSTXL-DRV8305EVM
(Motorl) (Motor2)
iz Quadrature] - EHER
: ENCA ! uadrature encoder
- =1 encoder 3 . IQ o t
- ENCB i ENCB ' (Color codes of connectors may vary)
8| e | al]! el
8 :_ _| g :_ I
+svoc | +5VDC
: —_ :_ _I
i L - 1 GND
: i -
I ENCA il ENCA
: - : ma—"
:' ENC B : :_ —cE] 1
iR enct | ol ooy
i 1 B F :
o |! ssvoc |l g |k +5VDC
L o] 1 i
i SNDJ Quadrature i GND Quadrature encoder
| A = encoder I L | (Color codes of connectors may vary)
LAUNCHXL-F28069M or LAUNCHXL-F28069M or
LAUNCHXL-F28379D controller LAUNCHXL-F28379D controller

TMDSRSLVR C2000 Resolver to Digital Conversion Kit

The TMDSRSLVR C2000 Resolver to Digital Conversion Kit configuration includes the following
hardware components:

« LAUNCHXL-F28069M controller

7-10

Hardware Connections

BOOSTXL-DRV8305 (supported inverter)

DC power supply

TMDSRSLVR C2000 Resolver to Digital Conversion Kit (Resolver Eval Kit [R2])
Resolver encoder

The following steps describe the hardware connections for the TMDSRSIVR hoard:

A W N R

Connect DC power supply (15V) to J2 on the TMDSRSLVR board.
Connect the resolver output pins for sine wave to pins 1, 2 of J10 on the TMDSRSLVR board.
Connect the resolver output pins for cosine wave to pins 3, 4 of J10 on the TMDSRSLVR board.

Connect the resolver input pins to the PWM_dither and PWM_SINE pins of J10 on the
TMDSRSLVR board.

The following step describes the hardware connection for the LAUNCHXL-F28069M controller board:

Connect the LAUNCHXL-F28069M controller board to a computer via USB port.

The following steps describe the hardware connections between the MCU Resolver Eval Kit [R2] and
LAUNCHXL-F28069M controller boards:

1

Connect the COS(T2) pin on the TMDSRSLVR board to pin 24 of J3 on the LAUNCHXL-F28069M
controller board.

Connect the SIN(T8) pin on the TMDSRSLVR board to pin 29 of J3 on the LAUNCHXL-F28069M
controller board.

Connect the GPIO2 pin on the TMDSRSIVR board to pin 38 of J4 on the LAUNCHXL-F28069M
controller board.

Pins 1, 2 - Sine wave
Pins 3, 4 — Cosine wave
Pins 6, 7 — PWM_SINE, PWM_dither
— Resolver input

COS(T2) to Pin 24 of I3

DC power SIN(T8) to Pin 29 of J3
supply (15V) ' ; .

e ‘s s s 8 8 = & _ @.u. .8 0 8. 8_ 8.0 8 =@

Resolver Eval Kit [R2]
C20e0e0 MCU

SPE®

7-11

Algorithm Export Workflows for Custom
Hardware

* “Open-Loop Control and ADC Offset Calibration” on page 8-2
* “Quadrature Encoder Offset Calibration” on page 8-11
* “Field-Oriented Control” on page 8-18

8 Algorithm Export Workflows for Custom Hardware

Open-Loop Control and ADC Offset Calibration

This is the first workflow that uses an algorithm to run a three-phase permanent magnet synchronous
motor (PMSM) using open-loop control. The workflow uses a host and a target model. The host model
is a user interface to the controller hardware board. You can run the host model on the host
computer. Before you run the host model on the host computer, build and deploy the target model
algorithm (integrated with the hardware drivers) to the controller hardware board. The host model
uses serial communication to command the target model algorithm and run the motor.

Expand the open loop folder to access these files.

* open loop algorithm.slx (target model)

* open loop data.m (model initialization script associated with the target model)
» open_loop host.slx (host model)

Generate Code For Control Algorithm Using Embedded Coder

1 After you open the MATLAB project, double-click the open_loop algorithm.slx file in the
open_loop folder.

Openloop Algorithm

single
convert P Speed_ref
speed_ref_rpm
it LowerSaturation ~ Vabc in PU w1)
owersaturation abc In
conve > Vabo Lo .
boost_voltage Vabe in PU
boolean
(3 } | enable
enable
Control_System

Explore more:
1. Edit motor & inverter parameters

2. Generate c code using the 'Embedded Coder' app
3. Integrate generated code with driver code
4. Control motor via host model

Copyright 2021 The MathWorks, Inc.

2 Select Modeling > Model Settings > Model Settings to open the Configuration Parameters
dialog box.

3 In the Solver Selection area of the Solver tab, update the Type and Solver fields.

8-2

Open-Loop Control and ADC Offset Calibration

e Configuration Parameters: open_loap_slgarithm/Configuration (Active) - O *
Q Search
[Solver | simulation time
Data Import/Export Start time: 0.0 Stop time: [10.0
ime: op fime:
Math and Data Types p
» Diagnostics)
g . Solver selection
Hardware Implementation
Model Referencing Type: Fixed-step | * | Solver: |auto (Automatic solver selection) =
Simulation Target
» Code Generation v Solver details
Coverage)
» HDL Code Generation Fixed-step size (fundamental sample time). auto

4 In the Hardware Implementation tab of the Configuration Parameters dialog box, configure the
parameters according to your hardware.

& Configuration Parameters: open_loop_algorithm/Configuration {Active) - O >
Q, Search
Solver Hardware board: None -

Data Import/Export
Math and Data Types
» Diagnostics
I Hardware Implementation I ¥ Davice details
Model Referencing

Code Generation system target file: e tlc
Device vendor; |[ARM Compatible * | Device fype: |ARM Cortex-M il

Simulation Target Mumber of bits Largest atomic size
» Code Generation char 8 short: 16 int: 32 integer Long |~
Coverage) long: 32 long long: 64 float: 32 floating-point: Double -
» HDL Code Generation
double: 64 native: 32 pointer. 32

size_t 32 ptrdiff_t. |32

Byte ordering: Little Endian [=] Signed integer division rounds to: | Zero -
| Shift right on a signed integer as arithmetic shift

7 Support long long

OK || cancel || Hep

5 In the Simulink toolstrip of the target model, select Apps > Embedded Coder to open the
Embedded Coder application.

8-3

8 Algorithm Export Workflows for Custom Hardware

SIMULATION DEBUG MODELING
Get Linearization Model
Add-Ons Manager Linearizer

ENVIRONMENT

F— .ﬂ

& & [I
Contrel System Parameter Response Robot Operating Embedded i*

Designer Estimator Optimizer System (ROS) Coder

APPS

6 In the Simulink toolstrip, select C Code > Code Interface > Default Code Mappings to open
the Code Mappings - C dialog box.

SIMULATION DEBUG MODELING FORMAT
= 4t —
@ g:/ @ @ Code for @ = B - L&t "::
Embedded Quick C/C++ Code Settings Code algorithm Generate View j_ﬁ Verify Share
CCode = Start Advisor = o Interface = Code = Code Code = >
2 s b o X
OUET ASSISTANCE PREPARE L}J Default Code Mappings E RESULTS VERIFY | SHARE LS
c) Configure code for modzel element categories =
- 2
(]
Individual Element Code Mappings
= Configure code for individual model elements
=
) 3 Embedded Coder Dictionary
[&J Configure code generation data and functions
single convert |b— — Storage Class Indicator
speed_rel_rpm Toggle visibility of storage class indicators on signals
convert |— 1)
boost_voltage 7 Calibration and Measurement properties Vabe in PU
@nwaan Toggle visibility of properties in the Code Mappings
gnacle Control_System
7 In the Code Mappings - C dialog box, open the Functions tab.
For a listed C function, click the hyperlink under the Function Preview column to open the
Configure C Initialize Function Interface dialog box.
Code Mappings - C @ x

Data Defaults Function Defaults Inports

Qutports Parameters Data Stores Signals/States

Filter contents

S initialize Model default
ﬁ: Periodic:D1 [Sample Time: 0.2s] Model default
ﬁr Terminate Model default

Customization Template Function Name
open_loop_algorithm_initialize

open_loop_algorithm_step

Function Pre
void open_loop_algarithm_initialize([* self])

void open_loop_algorithm_step([* self), arg_..

void open_loop_algorithm_terminate([* self])

9 Use the Configure C Initialize Function Interface dialog box to configure the interface and
arguments of the C function.

8-4

Open-Loop Control and ADC Offset Calibration

|:_i| Configure C Step Function Interface; open_loop_algorithm = O b4

Configure the generated C function interface, including function name and arguments.

C functicn prototype vioid open_loop_algorithm_step{[* self], arg.enable, arg_boost_voltage, arg speed ref_rpm. * arg_Vabe_in_PL)

G Step Function Name: | open_loop_algorithm_step

| Configure arguments for Step function prototype

Get default |(* invokes update diagram)

C returmn argument

vioid

Port Name Part Type C Type Qualifier C |dentifier Name
enable Inport Value w | | arg_enable
boost_voltage Inport Value * | | arg_boost_voltage
speed_ref_rpm Inport Value » | | arg_speed_ref_pm
Vabe in PU Outpart Painter * | | arg_Wabe_in_PU

Drag and drop raws te specify argumant ordes

Validate | (* invokes update diagram)

Press Validate button to get validation results.

OK Cancel Help Apply

10 Click Apply and OK to complete configuring the C function.
11 Repeat steps 10 to 12 for all the listed functions.

12 In the Simulink toolstrip of the target model, select C Code > Generate Code > Build to build
the model and generate a . ¢ file for the target model.

SIMULATION DEBUG MODELING FORMAT
ﬁ @ @ D Code for (= B - Lﬁ u@
Embedded Quick C/C++ Code Settings Code algorithm View S5 Verify | Share
C Code Start Advisor * - Interface = Code Code = x
CUTPUT ASSISTANCE PREPARE GENERATE CODE = 1
L . . snAnldl | 4+ Build LE
E Generate code and build model]
=t -4
t44 Generate Code
ks 2= Generate code only. Do not execute makefile
==

This image shows an example of the generated code for a C function.

8 Algorithm Export Workflows for Custom Hardware

8-6

/* Model step function */
void open_loop_algorithm_step(boclean_T arg_enable, real32 T arg_boost_voltage,

real32 T arg_speed_ref_rpm, real32 T arg Vabc_in PU[3])

real32 T rtb_Abs;

real32 T rtb_Abs_g;

real32 T rtb_Sumd;

real32 T rtb_Sumé;

real32 T rtb_Switch_o_idx_e;
real32 T rtb_add_b;

uintls T rtb_Get Integer tmp_tmp;

/* Discretelntegrator: '<54>/Ramp Generator' incorporates:

Note

* The generated C function uses the interface that you configured.
» For details about the per-unit system used in the algorithm, see “Per-Unit System” on page 6-20.

Obtain C Code For Hardware Drivers

You can use the code generation software supported by the hardware manufacturer to generate the
code for the hardware drivers. For example, for the reference STM32F302R8 controller and X-
NUCLEO-IHMO07M1 inverter, you can use the STM32CubeMX STM32Cube initialization code
generator software to configure the hardware peripherals and generate C code for the hardware
drivers. The example also includes the FOC_QEP. ioc file (created by STM32CubeMX software)
containing the hardware initialization data for the reference hardware.

Alternatively, you can also use a manually written driver code.

Integrate Control Algorithm Code With Driver Code

1 Call the control algorithm functions from the driver code using the configured control algorithm
function parameters. This image shows a call to the speed control algorithm C function.

// call the open loop algorithm step function
Iopen_loop_algorithm_step{ENABLE_INV, VOLTAGE_AMP_LOW_LIMIT, SPEED_REF, duty_vals);l

//f scale duty ratio to PWM counter period
for (int i = 8; 1 < 3; i++)
{

duty_wals[i] = (1 - duty_vals[i]) * htiml.Init.Periocd;

¥
// update duty cycles

2 Use the return value from the function call to complete integrating the driver with the controller
algorithm.

https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html

Open-Loop Control and ADC Offset Calibration

For details about the code structure and program control flow used by the Motor Control Blockset
examples, see “Program Control Flow of Motor Control Blockset Examples” on page 6-23.

View the integrated sample code main. c available in the open_1loop\STM32Code folder as a

reference.

Deploy Integrated Code to Hardware

1 Complete the hardware connections.

2 Use the code generation and deployment software supported by the hardware manufacturer to
compile, build, and generate a binary (for example .HEX) file from the integrated code. Use the
software to flash the binary file to the target hardware.

For example, for the reference STM32F302R8 controller and X-NUCLEO-IHM07M1 inverter, use
the STM32CubeMX STM32Cube initialization code generator to generate and flash the binary

file.

Control Motor Using Host Simulink Model

Follow these steps to run a three-phase PMSM using open-loop control:

1 Click the host model hyperlink in the target model to open the associated host model. You can
also double-click the open_loop host.slx file in the open loop folder.

Steps:

1. Set the baud rate for serial communication in
'Host Serial Setup’ block.

2. Select the serial port in "Serial 1" tab of 'Host
Serial Setup’ block.

3. Use 'Motor Start / Stop’ switch to control the
motor.

4. Enter speed request in RPM using 'Speed
Reference’ edit box. Limit the reference speed to
half of the rated speed.

5. Observe the ADC counts for phase current
measurent in Scope.

Openloop Control Host

Motor Control Panel

Start

- Stop
Speed reference (RPM) Motor
HOST
la (ADC)
Serial
Setup
Ib (ADC)

5

Host Serial Setup

Serial Communication

Copyright 2021 The MathWorks, Inc.

2 In the Serial 1 tab of the block parameters dialog box for the Host Serial Setup block, select a
Port name and enter a Baud rate for serial communication.

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.

https://www.st.com/en/development-tools/stm32cubemx.html

8 Algorithm Export Workflows for Custom Hardware

8-8

Click Run on the Simulation tab to run the host model.
Turn the Motor slider switch to the Start position to start running the motor.

Update the reference speed value in the Speed Reference (RPM) field. It is recommended that
you set the speed to a value that is approximately half the rated speed of the motor.

After the motor runs, observe the ADC counts for the I, and I, currents in the time scope.

Stop the host model simulation and turn the Motor slider switch to the Stop position to stop the
motor.

Follow these steps to determine the ADC offsets for the current sensors:

Disconnect the DC voltage supply from the hardware.

Disconnect the motor wires for three phases from the hardware board terminals and then
reconnect the DC voltage supply to the hardware.

Click Run on the Simulation tab to run the host model.

Observe the ADC counts for the I, and I, currents in the time scope. The average values of the
ADC counts are the ADC offset corrections for the currents I, and I,,. Follow these steps to obtain
the average (median) values of ADC counts:

* In the Scope window, navigate to Tools > Measurements and select Signal Statistics to
display the Trace Selection and Signal Statistics areas.

Open-Loop Control and ADC Offset Calibration

4. Scope

File Tools View Simulation Help N

@ - Zoom In
Zoom ¥
Zoom Y
Zoorm Out
Pan
HAxes Scaling
Triggers

Measurermnents

M MEHRE B

Trace Selection

Cursor Measurements

Signal Statistics

Bilevel Measurements

Peak Finder

Sample based

Under Trace Selection, select a signal (I, or I;)). The time scope displays the characteristics
of the selected signal in the Signal Statistics area. You can see the median value of the
selected signal in the Median field.

8-9

8 Algorithm Export Workflows for Custom Hardware

¥ ¥ Trace Selection

la

* ¥ Signal Statistics

-5_000e-01

1.600e+00

Update this ADC (or current) offset value in the inverter.CtSensAOffset and
inverter.CtSensBOffset variables in the model initialization script linked to “Field-Oriented
Control” on page 8-18.

To compute the offset of the quadrature encoder position sensor attached to the motor, see
“Quadrature Encoder Offset Calibration” on page 8-11.

8-10

Quadrature Encoder Offset Calibration

Quadrature Encoder Offset Calibration

This is the second workflow that uses an algorithm to calculate the offset between the d-axis of the
rotor and the index pulse position as detected by the quadrature encoder sensor attached to the
permanent magnet synchronous motor (PMSM). The workflow uses a host and a target model. The
host model is a user interface to the controller hardware board. You can run the host model on the
host computer. Before you run the host model on the host computer, build and deploy the target
model algorithm (integrated with the hardware drivers) to the controller hardware board. The host
model uses serial communication to command the target model algorithm and run the motor.

Expand the gep _calibration folder to access these files.

* gep _calibration _algorithm.slx (target model)
* qep calibration data.m (model initialization script associated with the target model)
* gep calibration host.s1lx (host model)

Generate Code For Control Algorithm Using Embedded Coder

1 After you open the MATLAB project, double-click the gep calibration algorithm.slx file in
the gep calibration folder.

Offset Computation algorithm for QEP

Vabe_pu » 1
boolean "
@ B Enable . Wabc_pu
enable ode s
mode
Cantrol System
uint16
@ P Count
count oo "
uint16
@ P IndexCount pos_pu
index

QEP Decoder

Explore more:
Copyright 2021 The MathWorks, Inc. 1. Edit motor & inverter parameters

2. Generate ¢ code using the 'Embedded Coder' app
3. Integrate generated code with driver code
4. Control motor via host model

2 Select Modeling > Model Settings > Model Settings to open the Configuration Parameters

dialog box.

3 Inthe Solver Selection area of the Solver tab, update the Type and Solver fields.

8-11

8 Algorithm Export Workflows for Custom Hardware

& Configuration Parameters: qep_calibration_algorithm/Configuration (Active) - O X
Q Search
I Solver I Simulation time:
Data Import/Export . 0 Stop fime: [10.0
Math and Data Types AL op ime:
» Diagnostics
g : Solver selection
Hardware Implementation
Model Referencing | Type: Fixed-step * | Splver: |discrete (no continuous states) |v I
Simulation Target
¥ Code Generation ¥ Solver details
Optimization
Report Fixed-step size (fundamental sample time): auto

M ammnnde

4 In the Hardware Implementation tab of the Configuration Parameters dialog box, configure the
parameters according to your hardware.

& Configuration Parameters: qep_calibration_algorithm/Configuration (Active) - O >

o
o
e

Solver “ Hardware board. Mone -
Data Import/Export
Math and Data Types
» Diagnostics
I Hardware Implementation | * Device details
Model Referencing

Code Generation system target file: eftlic
Device vendor. |ARM Compatible | = | Device type: |ARM Cortex-M -

Simulation Target Number of bits Largest atomic size

¥ Code Generation char 8 short: 16 int: 12 integer: Long |
Shoremig long- 32 long long: 64 float: 32 floating-point: Double | =
Report
Commenis double: 64 native: 32 pointer; 32
Identifiers size_t 32 pirdiff_t: |32
Custom Code
Interface Byte ordering: | Little Endian + | Signed integer division rounds to: |Zero | » .
Lol %] Shift right on a signed integer as arithmetic shif
Verification i
Templates | Support long long

Code Placement
Data Type Replacement
Coverage e

OK | Cancel || Help

5 In the Simulink toolstrip of the target model, select Apps > Embedded Coder to open the
Embedded Coder application.

SIMULATION DEBUG MODELING FORMAT APPS
o beanal
& & L) e N [&

Get Linzarization Madel Control System Parameter Respanse Robot Operating Embedded
Add-Ons Manager Linearizer Designer Estimator Optimizer System (ROS) Coder

ENVIRONMENT APPS 1

8-12

Quadrature Encoder Offset Calibration

6 In the Simulink toolstrip, select C Code > Code Interface > Default Code Mappings to open
the Code Mappings - C dialog box.

SIMULATION DEBUG MODELING FORMAT
o ' te4 —
(/I' @ @ Code for D’E' = B Y lj u@
Embedded Quick C/C++ Code Settings Code algorithm Generate View jﬁ Verify | Share
CCode ~ Start Advisor ¥ v Interface Code Code Code x
AN oED 3 c |
COUTPUT ASSISTANCE PREPARE DE RESULTS VERIFY SHAR
E % Default Code Mappings 2 -
& Configure code for modsl slement categories -
= 8
Individual Element Code Mappings
=X Configure code for individual model elements
=]
) -__E Embedded Coder Dictionary
O Configure code generation data and functions
singls convert |b— — Storage Class Indicator
spead_ral_rpm Toggle visibility of storage class indicators on signals
convert f— » 1)
boost_voltage vl Calibration and Measurement properties Vabe in PU
3 }hmsa" Toggle visibility of properties in the Code Mappings
gnatie Control_System
7 In the Code Mappings - C dialog box, open the Functions tab.
8 For a listed C function, click the hyperlink under the Function Preview column to open the
Configure C Initialize Function Interface dialog box.
Code Mappings - C @1 x>
Data Defau!ts Function Deh_ults Inports Outports Parameters Data Stores Signa1§f5_1_;ates
[3
A = o -
Function Customization Template Function Narr Function Preview
ﬁ(Initialize Model default qep_callbration_algorithm_initialize void qep_calibration_algorithm_initialize([* self])
ﬁ: Periodic:D1 [Sample Time: 0.25] Model default qep_calibration_algorithm_step void qep_calibration_algorithm_step([* self], a...
ﬁc Terminate Model default void gep_calibration_algorithm_terminate{[* s...

9 Use the Configure C Initialize Function Interface dialog box to configure the interface and
arguments of the C function.

8-13

8 Algorithm Export Workflows for Custom Hardware

[‘_;‘._J Configure C Step Function Interface: gep_calipration_algorithm - m] ®
Configure the generated C function interface, mcluding function name and arguments.
;Ifunl:'.lnn profotype: woud qep_calibraton_algonthm_stepd[” seif], arg_enable arg mdex, arg_count, * arg_Vabc_pu, * arg_mode, ™ arg_pos_pu)
C Step Function Name: | gep_calibration_algorithm_step
| Configure arguments for Step function prototype
Get default (" mvokes update diagiam)
© return argument woid -
Part Mame Port Type C Type Qualifier C ldentifier Hame
enable Inpeorl Value arg_enable
index Irspoirt Walue arg_index
Count Inport Walue arg_count
Vabc_pu Cutport Poirite ang_Vabe_ pu
mode Outpart Pointer arg_mode
pOs_pas Cutport Poirter arg_pos_pa
Drag and drop rows to specfy angument crder
Valdate | (" invokes update diagram)
Prass Validate bullon 1o get validation resulls.
OK Cancel Help Spply

10 Click Apply and OK to complete configuring the C function.
11 Repeat steps 10 to 12 for all the listed functions.

12 TIn the Simulink toolstrip of the target model, select C Code > Generate Code > Build to build

the model and generate a . c file for the target model.

SIMULATION DEBUG MODELING FORMAT

(c]

Embedded
CCode ~

OUTPUT

57 © 8 U cew

Quick C/C++ Code Settings Code algorithm
Start Advisor * - Interface
| ASSISTANCE PREPARE

GENERATE CODE

+ 4

= | E g |
Generate View m Verify Share
| Code = Code Code = >

|| A+ Build

Generate code and build model

-

++4 Generate Code

Generate code only. Do not execute makefile

This image shows an example of the generated code for a C function.

8-14

J==

apad

Quadrature Encoder Offset Calibration

/* Model step function */
void gep_calibration_algorithm_step(boolean T arg _enable, uintlé T arg_index,

uintl6_T arg_count, real32_T arg Vabc_pu[3], real32 T *arg_mode, real32 T

*arg_pos_pu)

real32 T rtb_Abs;

real32 T rtb_Sum4;

real32 T rtb_Switch_j;
real32 T rtb_Switch_o_idx @;
real32 T rtb_add c;

uint16_T rtb_Sum3;

/* Outputs for Enabled SubSystem: "<S1>/counter’ incorporates:

Note

* The generated C function uses the interface that you configured.
» For details about the per-unit system used in the algorithm, see “Per-Unit System” on page 6-20.

Obtain C Code For Hardware Drivers

You can use the code generation software supported by the hardware manufacturer to generate the
code for the hardware drivers. For example, for the reference STM32F302R8 controller and X-
NUCLEO-IHMO07M1 inverter, you can use the STM32CubeMX STM32Cube initialization code
generator software to configure the hardware peripherals and generate C code for the hardware
drivers. This example also includes the FOC _QEP.ioc file (created by STM32CubeMX software)
containing the hardware initialization data for the reference hardware.

Alternatively, you can also use a manually written driver code.

Integrate Control Algorithm Code With Driver Code

1 Call the control algorithm functions from the driver code using the configured control algorithm
function parameters. This image shows a call to the speed control algorithm C function.

// call the QEP calibration algorithm step function
Iqep_calibration_ﬂlgorithm_step{ENABLE_INV, QEP_INDEX_COUNT, QEP_COUNT, duty wals, &mode, &position_meas}4

uintlé_t debug 1 = {uintls_t)(position_meas * 65535);
uintlé_t debug 2 = (uintls_t)mode;

// scale duty ratio to PWM counter period
for (int 1 = @; 1 < 3; i++4)
1

duty_wvals[i] = (1 - duty_wvals[i]) * htiml.Init.Period;

b

// update duty cycles

8-15

https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html

8 Algorithm Export Workflows for Custom Hardware

2 Use the return value from the function call to complete integrating the driver with the controller
algorithm.

For details about the code structure and program control flow used by the Motor Control Blockset
examples, see “Program Control Flow of Motor Control Blockset Examples” on page 6-23.

View the integrated sample code main. c available in the gep_calibration\STM32Code folder as a
reference.
Deploy Integrated Code to Hardware

1 Complete the hardware connections.

2 Use the code generation and deployment software supported by the hardware manufacturer to
compile, build, and generate a binary (for example .HEX) file from the integrated code. Use the
software to flash the binary file to the target hardware.

For example, for the reference STM32F302R8 controller and X-NUCLEO-IHM(07M1 inverter, use
the STM32CubeMX STM32Cube initialization code generator to generate and flash the binary
file.

Control Motor Using Host Simulink Model

Follow these steps to determine the offset of the quadrature encoder sensor attached to a three-phase
PMSM:

1 Click the host model hyperlink in the target model to open the associated host model. You can
also double-click the gep calibration host.slx file in the qep calibration folder.

QEP offset calibration host

Steps: Motor Control Panel

1. Set the baud rate for serial communication in
'Host Serial Setup’ block. Stop Start

QEP offset (pu)

2. Select the serial port in "Serial 1' tab of 'Host Calibration
Serial Setup’ block.

3. Use 'Calibration Start / Stop’ switch to control
the motor.

4. Observe the position signal on the scope and HOST
ensure that the signal has a positive slope. If not,)
Serial position

position >
stop the calibration, disconnect the power supply Setup
and interchange two of the motor phases.

maode

mode

5. The calculated offset will be displayed on the Host Serial Setup Serial Communication
"QEP offset (pu)" block

Copyright 2021 The MathWorks, Inc.

8-16

https://www.st.com/en/development-tools/stm32cubemx.html

Quadrature Encoder Offset Calibration

2 In the Serial 1 tab of the block parameters dialog box for the Host Serial Setup block, select a
Port name and enter a Baud rate for serial communication.

For details about the serial communication between the host and target models, see “Host-Target
Communication” on page 6-2.
3 Click Run on the Simulation tab to run the host model.

Turn the Calibration slider switch to the Start position to start the calibration process by
running the motor.

5 Observe the position signal in the time scope.

After the calibration process is complete, simulation ends and the motor stops automatically. The
model displays the computed encoder offset value in the QEP offset (pu) field.

6 Check if the position signal has a positive slope. Follow these steps, if the slope is negative:
* Turn the Calibration slider switch to the Stop position to stop the calibration process and
stop running the motor.
* Disconnect the DC voltage supply from the hardware.

* Interchange any two motor phase connections and then reconnect the DC voltage supply to
the hardware.

* Follow steps 4 and 5 to run the calibration algorithm again and determine the encoder offset
value.

The example automatically saves the computed offset value in the PositionOffset variable available in
the base workspace.

Update computed offset value in the pmsm.PositionOffset variable available in the model initialization
script linked to “Field-Oriented Control” on page 8-18.

8-17

8 Algorithm Export Workflows for Custom Hardware

Field-Oriented Control

8-18

This is the third workflow that runs a three-phase permanent magnet synchronous motor (PMSM)
using closed-loop field-oriented control (FOC). For more details about FOC, see “Field-Oriented
Control (FOC)” on page 4-3. The workflow uses a host and a target model. The host model is a user
interface to the controller hardware board. You can run the host model on the host computer. Before
you run the host model on the host computer, build and deploy the target model algorithm (integrated
with the hardware drivers) to the controller hardware board. The host model uses serial
communication to command the target model algorithm and run the motor.

Expand the foc_qep folder to access these files.

* current control algorithm.slx (target model for current controller)

* speed control algorithm.slx (target model for speed controller)

+ foc _gep data.m (model initialization script associated with the target models)
+ foc _gep host.slx (host model)

Before using this workflow, complete “Open-Loop Control and ADC Offset Calibration” on page 8-2
and “Quadrature Encoder Offset Calibration” on page 8-11 to compute the ADC and position sensor
offsets. Update the offsets in these variables available in the model initialization script

foc gep data.m:

* inverter.CtSensAOffset and inverter.CtSensBOffset variables (ADC offsets for I, and I, current
Sensors)

* pmsm.PositionOffset (position offset for quadrature encoder sensor)
Generate Code For Control Algorithm Using Embedded Coder

1 After you open the MATLAB project, double-click the current control algorithm.slx file in
the foc_qep folder.

Field-Oriented Control

Current Control Algorithm

A

Idg_ref PU

Lint32 Speed_meas_PU

|dq_ref_pu@ Ginta2 la_ADC speed_meas_pu
laAaDC(3 } — lo_ADG Duty_Cycles

Ib ADC(4 } - QEP_Count du les

- uint16 en_closed loop 4’@
QEP Count(_ 5 } QEP_Indax - - |

" en_closed loop
QEP_Index (_7 } boclean speed_ref position_meas 4‘“

o

Yy

h

r

k.

speed_ref enable posifion_meas
enable - enable_c|_host lab_meas PU
enable_cl_hosl Current Control lab_meas_PU

Copyright 2021 The MathWaorks, Inc.

Explore more:
1. Edit motor & inverter parameters

2. Generate ¢ code using the 'Embedded Coder' app
3. Integrate generated code with driver code
4. Control motor via host model

2 Select Modeling > Model Settings > Model Settings to open the Configuration Parameters
dialog box.

3 Inthe Solver Selection area of the Solver tab, update the Type and Solver fields.

& Configuration Parameters: current_control_algorithm/Configuration (Active) - O x
| Solver Simulation time

Data Import/Export
Math and Data Types
» Diagnostics

Start time: (0.0 Stop time: |10.0

Solver selection
Hardware Implementation

Model Referencing Type: |Fixed-step ¥ | Solver: |discrete (no continuous states) -
Simulation Target

» Code Generation ¥ Solver details
Coverage

» HDL Code Generation Fixed-step size (fundamental sample time) aulo

4 In the Hardware Implementation tab of the Configuration Parameters dialog box, configure the
parameters according to your hardware.

8-19

8 Algorithm Export Workflows for Custom Hardware

38 Lonnguration Farameters: C 2Nl CONLrc Qarin _OnNTIgurs

A 1 + B . 1 t ™ s
& Co ation Parameters e on ; \ f B Wctive O

Q Search

Solver Hardware board. Mone | =

Data Import/Export

Math and Data Types
» Diagnostics

Code Generation system target file: erttic
Device vendor. |ARM Compatible « | Device type: |ARM Cortex-M -

| Hardware Implementation ||+ Device details

Model Referencing

Simulation Target Mumber of bits Largest atomic size
» Code Generation char 8 short: 16 int: 32 integer Long |~
Coverlage long 32 long long: 64 float: 32 floating-point: Double *
» HDL Code Generation
double; 64 native: 32 pointer; 32
size t 32 ptrdiff t. |32
Byte ordering: |Little Endian * | Signed integer division rounds to: |Zero -

+| Shift right on a signed integer as arithmetic shift

| Support long long

OK | | Cancel_| |_ Help

5 Obtain the motor and inverter parameters. The target model uses default motor parameters that
you can replace with values from either the motor datasheet or other sources.

However, you can use your motor control hardware to estimate the parameters for the motor that
you want to use by using the Motor Control Blockset parameter estimation tool. For instructions,
see “Estimate PMSM Parameters Using Custom Hardware” on page 4-213. The parameter
estimation tool updates the motorParam variable (in the MATLAB workspace) with the estimated
motor parameters.

6 Update the motor and inverter parameters. If you obtain the motor parameters from the
datasheet or from other sources, update the motor and inverter parameters in the model
initialization script (foc_qep_data.m) associated with the Simulink model. For instructions, see
“Estimate Control Gains and Use Utility Functions” on page 3-2.

If you use the parameter estimation tool, you can update the inverter parameters, but do not
update the motor parameters in the model initialization script. The script automatically extracts
the motor parameters from the updated motorParam workspace variable.

7 In the Simulink toolstrip of the target model, select Apps > Embedded Coder to open the
Embedded Coder application.

SIMULATION DEBUG MODELING FORMAT
& e el
& = &2 = ¥ F 3]

Get Linzarization Madel Control System Parameter Respanse Robot Operating Embedded
Add-Ons + Manager Lingarizer Designer Estimator Optimizer System (ROS) Coder

ENVIRONMENT APPS x

8-20

Field-Oriented Control

8 In the Simulink toolstrip, select C Code > Code Interface > Default Code Mappings to open
the Code Mappings - C dialog box.

SIMULATION DEBUG MODELING FORMAT C CODE X

- = [444 =
5/ &) © Code for =) Har v |<
Embedded Quick C/C++ Code Settings Code algorithm Generate View ;ﬁ Verify | Share
CCode = Start Advisor = > Interface * Code = Code Code = x
AN oED 3 c |
COUTPUT ASSISTANCE PREPARE DE RESULTS VERIFY SHARE
E % Default Code Mappings -
& Configure code for modsl slement categories -
= -
Individual Element Code Mappings
=X Configure code for individual model elements
=]
§ -._g Embedded Coder Dictionary
O Configure code generation data and functions
singls convert |b— — Storage Class Indicator
spead_ral_rpm Toggle visibility of storage class indicators on signals
convert f— » 1)
boost_voltage 7 Calibration and Measurement properties Vabe in PU
(3 }hm”" Toggle visibility of properties in the Code Mappings
gnatie Control_System
9 In the Code Mappings - C dialog box, open the Functions tab.
10 For a listed C function, click the hyperlink under the Function Preview column to open the
Configure C Initialize Function Interface dialog box.
Code Mappings - C @ x
Data Defaults Function Defaults Inports Outports Parameters DataStores Signals/States
1S
e Function Customization Template Function Name Function Preview
_ﬁ Initialize Model default current_control_algorithm_initialize void current_control_algorithm_initialize([* self])
ﬁ(Periodic:D1 [Sample Time: 5e-05s] Model default current_control_algorithm_step void current_control_algorithm_step([* self], arg_enable, .
ﬁ: Terminate Model default void current_control_algorithm_terminate([* self])

11 Use the Configure C Initialize Function Interface dialog box to configure the interface and
arguments of the C function.

8-21

8 Algorithm Export Workflows for Custom Hardware

| ti] Configuie C Stes Function Interface; cumrent_Contral_algarhm - [m] *
Configure tha ganerated G funclion intarfaca, mcluding funciaon nams and arguments.
& function probotype wokd curent_cominod_slgorihim_stepd]” sk, ang_ensbie, ang_enable
© Step Function Mame: | current_goninol_sigorithm_step
:". Confoune anglamants for S1ep Mncton prosstvde

| | Getdefaut 0" invakes updabe diagram)

© retum argument vkl =
Z

Port Mame Port Type C Type Qualifier € Idertifier Name:

enakie Inpaet Vol = | | arg_enabk N
enable_cl host Inpaet Vol = | | aig_enabke o hast

a ALDC Inpaet Vel = || arg_la_mDc

0 ALDC Inpaet Vel = | | arg_lb_aDc

GEP Index Inpaet Vel = | | gig_[EP_ndkes !
GEP_Count Inpaet Wl = | | arg_GEF_Count

St o [T R L —
iy drap rows 1o spacky aegument oodar

Walidate | (" inwakes update diagram)

Prass Vabdata butlon ta ged validation resulls

I !
Gk Cancal Help Apply
12 (Click Apply and OK to complete configuring the C function.
13 Repeat steps 10 to 12 for all the listed functions.

14 In the Simulink toolstrip of the target model, select C Code > Generate Code > Build to build
the model and generate a . c file for the target model for current controller.

SIMULATION DEBUG MODELING FORMAT C CODE x

i:/ @ @ D Code for = B~ lg (:
Embedded Quick C/C++ Code Settings Code algorithm : View S5 Verify | Share
C Code Start Advisor * - Interface = Code Code = x
CUTPUT ASSISTANCE PREPARE GENERATE CODE = 1
' || A&+ Build e
E 2i2) Generate code and build model]
=t 3
* *_‘ Generate Code
ks 2= Generate code only. Do not execute makefile
==

This image shows an example of a C function available in the generated current controller code.

8-22

Field-Oriented Control

/* Model step function */

void current_control algorithm_step(boolean T arg enable, boolean T
arg_enable cl host, uint32 T arg Ia ADC, uint32 T arg Ib ADC, uintle T
arg_QEP_Index, uintl6 T arg QEP_Count, real32 T arg_speed_ref, real32 T
arg_idg_ref _pu[2], real32 T *arg_speed_meas_pu, real32 T arg_duty_cycles[3],
boolean T *arg_en_closed loop, real32 T *arg _position meas, real32 T
arg _Iab meas PU[2])

real32 T rtb_Add2_n;

real32 T rtb_Frequency;
real32 T rtb_PositionGain;
real32 T rtb_algDD ol _c;
real32 T rtb_one_by_two;
uint32 T rtb_PositionToCount;
uintlé T rtb_Sum3;

/* Outputs for IfAction SubSystem: ‘<S555>/PositionMoReset' incorporates:

Note

* The generated C function uses the interface that you configured in step 11.
* For details about the per-unit system used in the algorithm, see “Per-Unit System” on page 6-20.

Repeat steps 1 to 14 for the target model for speed controller (speed control algorithm.slx) to
generate the speed controller code.

Obtain C Code For Hardware Drivers

You can use the code generation software supported by the hardware manufacturer to generate the
code for the hardware drivers. For example, for the reference STM32F302R8 controller and X-
NUCLEO-IHMO07M1 inverter, you can use the STM32CubeMX STM32Cube initialization code
generator software to configure the hardware peripherals and generate C code for the hardware
drivers. The example also includes the FOC_QEP. ioc file (created by STM32CubeMX software)
containing the hardware initialization data for the reference hardware.

Alternatively, you can also use a manually written driver code.

Integrate Control Algorithm Code With Driver Code

1 Integrate the code for the speed and current controllers.

2 Call the control algorithm functions from the driver code using the configured control algorithm
function parameters. This image shows a call to the speed control algorithm C function.

8-23

https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html

8 Algorithm Export Workflows for Custom Hardware

// call the current control step function

current_control_algorithm_step(ENABLE_INV, EMABLE_CL_HOST, Ia, Ib, QEP_INDEX_COUNT, QEP_COUNT, SPEED_REF, (real32_T *)IDQ_REF,
(real32 T *)&SPEED MEAS PU, duty vals, (boolean T *)&CL ENABLE, &pos meas, Iab meas pu);

uint16_t debug_1
uintle t debug 2

(uint16_t) ({(Tab_meas_pu[@] + 1)/2) * 65535);
(uintl6 t)(((SPEED MEAS PU + 1)/2) * 65535);

// scale duty ratio to PWM counter period
for (int 1 = 9; 1 < 3; i++)
{
duty_vals[i] = (1 - duty_wvals[i]) * htiml.Init.Period;
1
g

// update duty cycles

3 Use the return value from the function call to complete integrating the driver with the controller
algorithm.

For details about the code structure and program control flow used by the Motor Control Blockset
examples, see “Program Control Flow of Motor Control Blockset Examples” on page 6-23.

View the integrated sample code main. c available in the foc _qep\STM32Code folder as a reference.

Deploy Integrated Code to Hardware

Complete the hardware connections.

2 Use the code generation and deployment software supported by the hardware manufacturer to
compile, build, and generate a binary (for example .HEX) file from the integrated code. Use the
software to flash the binary file to the target hardware.

For example, for the reference STM32F302R8 controller and X-NUCLEO-IHM07M1 inverter, use
the STM32CubeMX STM32Cube initialization code generator to generate and flash the binary
file.

Control Motor Using Host Simulink Model

Follow these steps to determine the offset of the quadrature encoder sensor attached to a three-phase
PMSM:

1 Click the host model hyperlink in the target model to open the associated host model. You can
also double-click the foc_gep host.slx file in the foc_qep folder.

8-24

https://www.st.com/en/development-tools/stm32cubemx.html

Field-Oriented Control

FOC QEP Host Control

Steps: Motor Control Panel

1. Set the baud rate for serial communication in
'Host Serial Setup’ block.

2. Select the serial port in 'Serial 1' tab of 'Host
Serial Setup' block.

3. Use 'Motor Start / Stop' switch to control the
start and stop of the motor.

4. Use the 'Motor Control Open Loop / Closed
Loop' switch to switch between open loop and

closed loop control.

4. Enter speed request in RPM using 'Speed
Reference' edit box. Limit the reference speed to
half of the rated speed while starting the motor in
open loop.

1000 Stop Start
Speed Reference (RPM)
Motor
Open Loop Closed Loop
Maotor Control
HOST
la_pu
Serial la
Setup

speed meas pu

1L

5. Observe the la and measured speed signals
on the scope.

Copyright 2021 The MathWorks, Inc.

RX

speed meas

Y

2 In the Serial 1 tab of the block parameters dialog box for the Host Serial Setup block, select a

Port name and enter a Baud rate for serial communication.

For details about the serial communication between the host and target models, see “Host-Target

Communication” on page 6-2.

3 Click Run on the Simulation tab to run the host model.

Ensure that the current position of Motor Control slider switch is Open Loop. Turn the Motor

Start / Stop slider switch to the Start position to start running the motor using open-loop

control.

5 Before entering closed-loop control, enter the reference speed for the motor in the Speed

Reference (RPM) field. It is recommended that you set the speed to a value that is
approximately half the rated speed of the motor.

6 Turn the Motor Control slider switch to the Closed Loop position to start running the motor

using closed-loop field-oriented control.

7 Observe the I, and speed signals in the time scope.

8-25

Modeling Guidelines for Motor Control
Applications

9 Modeling Guidelines for Motor Control Applications

Create and Validate Model for Motor Control System

Use Motor Control Blockset to design a Simulink model for a motor control system and validate it
after deploying the model to the motor control hardware. This table lists the fundamental steps for
creating and deploying a field-oriented control algorithm for a PMSM.

9-2

Note You can use a similar procedure to design and deploy a control algorithm for the other types of

motors.

Modeling Steps

Learn More

Compute estimated motor parameters and create
plant model

“Estimate PMSM Parameters Using
Recommended Hardware” on page 4-189

“Creating Plant Model Using Motor Control
Blockset”

Create controller algorithm for motor control
system

“Design Field-Oriented Control Algorithm”

“Estimate Control Gains and Use Utility
Functions” on page 3-2

“Code Verification and Profiling Using PIL
Testing”

Deploy and validate motor control system

“Prepare Target Hardware”

“Add Hardware Drivers to Simulation Model and
Deploy to Target Hardware”

“Validate System”

See these instructions to identify and debug common problems that can occur when you run the

model on the target hardware.

Troubleshooting Steps

Learn More

Check for errors in measurements by analog to
digital converter (ADC) peripheral in motor
control applications

“Check ADC Inputs”

Verify pulse width modulation (PWM) signals

“Verify PWM Outputs”

Check for issues in hardware connections

“Check Hardware Connections”

Check for issues in algorithm used for model

“Test Algorithm Design”

Check for problems related to software
architecture, code performance, and code
execution time

“Check Generated Code”

Using Hall Validity and Hall Decoder
Blocks

10 Using Hall Validity and Hall Decoder Blocks

How to Use Hall Validity and Hall Decoder Blocks

If you are using Hall position sensors to obtain the position feedback, follow this procedure to
integrate the field-oriented control (FOC) algorithm with the Hall sensors and decode the rotor
position and speed values.

To determine the rotor position, direction of rotation, and an accurate rotor speed, we need at least
three Hall sensors inside the motor. To increase the accuracy of the computed rotor position and
speed values, you can use a motor that has more than three Hall sensors. This procedure uses the
model mcb pmsm_ foc hall f28069m.s1x as a reference. In addition, it assumes a hardware setup
that uses a permanent magnet synchronous motor (PMSM) with three Hall sensors that are placed
120 degrees apart.

|
[Hall A

“ Hall A |

L

- Hall €
b,
Hall C Hall 8

Configure eCAP Pins

After you connect the three Hall sensors to the GPIO pins of the hardware, use the model
configuration parameters dialog box to connect these GPIO pins to the eCAP module registers. The
eCAP timer captures the time elapsed between two consecutive Hall value changes (0 to 1 or 1 to 0)
for a single Hall sensor. You can use this time interval along with the current Hall state (Hall sensor A
+ Hall sensor B + Hall sensor C) to compute the rotor position and speed values. For example, for
Hall sensor A, eCAP module should read eCAP1 register and record two time intervals (T1 and T2)
between the Hall value changes that occur during a 360 electrical degree rotation cycle.

"™ -

360 electrical degrees rotation cycle

Similarly, eCAP2 and eCAP3 registers should read the Hall values and record the time intervals for
Hall sensors 2 and 3 respectively. Use the following procedure to configure the eCAP connections.

10-2

How to Use Hall Validity and Hall Decoder Blocks

In the Simulink model, use the Simulink toolstrip to open Model Settings to open the Configuration
Parameters dialog box. In the Target hardware resources section of the Hardware
Implementation tab, click the eCAP group. Use these fields to assign eCAP registers to the general-
purpose I/O (GPIO) pins connected to the Hall sensors:

+ ECAPI1 pin assignment — Select the GPIO pin connected to the Hall sensor A.

* ECAP2 pin assignment — Select the GPIO pin connected to the Hall sensor B.

+ ECAP3 pin assignment — Select the GPIO pin connected to the Hall sensor C.

& Configuration Parameters: mch_pmsm_foc_hall_{28069m/Configuration (Active) = O k4
Sotver Hardware board: | Tl Piccolo F2806x -

Data Import/Export

Code Generation system target file. erttic

Math and Data Types _ -
» Diagnostics Device vendor: [Texas Instruments * | Device type: |(C2000 =
I Hardware Implementation I » Device details

Model Referencing
Simulation Target
» Code Generation

Coverage
Simscape
» Simscape

Hardware board settings

» Operabing system/scheduler

Multibody ¥ Target hardware resources

Groups

Build options
Clocking
ADC

COMP ECAP3 pin assignment. | GPIO26 -
eCAN A
eCAF
ePYWM
12C
SCI_A
SCIB
SPI_A
SPI_B
eQEP

ECAP1 pin assignment: | GPIO24 -
ECAF2 pin assignment: | GPIO25 i

OK Cancel Help

Generate Interrupts for Hall Value Transitions

For each Hall sensor, the eCAP timer should reset and start when the Hall value changes (transitions
from O to 1 or 1 to 0). A hardware interrupt can trigger this action when a Hall value changes. Use
this procedure to generate separate set of hardware interrupts for the three eCAP registers
(connected to the three Hall sensors).

1 Use the Simulink browser to add the C28x Hardware Interrupt block from Embedded Coder
Support Package for Texas Instruments C2000 Processors > Scheduling.

10-3

10 Using Hall Validity and Hall Decoder Blocks

C28x
IRGN »(1)
Interrupt HW_INT
Hardware Interrupt Qutport
S-Function

2 Use the C28x Interrupt Block Parameters dialog box to configure the block. Set the CPU
interrupt numbers and PIE interrupt numbers parameters to configure the block to trigger
an interrupt for each Hall value change (transition from 0 to 1 or 1 to 0) for every Hall sensor. In
addition, this configures the block to interface with the configured eCAP registers to detect a
Hall value change.

Block Parameters: C28x Hardware Interrupt

C28x Interrupt Block (mask) (link)

Create Interrupt Service Routine which will execute the downstream
subsystem.

Mote: The default model base sample rate priority is set to 40 with a
lower priority value indicating a higher priority task. These
parameters can be changed in the 'Solver' pane of the 'Configuration
Parameters'. The Simulink task priority of the selected interrupt is
relative to the model base rate priority settings.

Parameters

CPU interrupt numbers:

mm4ﬂ E

PIE interrupt numbers:
[123] IE

Simulink task priorities:
1[30 50 25] IE

Preemption flags: preemptable-1, non-preemptable-0
[100] IE

[] Enable simulation input

Cancel Help Apply

3 Place the C28x Hardware Interrupt block inside a subsystem named Code Generation and

connect it to a demultiplexer to generate separate hardware interrupt signals for the three Hall
Sensors.

10-4

How to Use Hall Validity and Hall Decoder Blocks

HW INT—— >l 5] _
. Interrupt signals for
Code Generation \ three Hall sensors
SubSystem - >
Demux

Service Generated Interrupts

Service the hardware interrupt signals so that for each interrupt:

* The eCAP timer (for a Hall sensor) resets and restarts.
* The algorithm captures the current Hall state (Hall sensor A + Hall sensor B + Hall sensor C).

eCAP count used to compute current motor speed —— T1(A) TUB) TUC) T2(A) T2(B) T2(C)
Current Hall state ————p 6 4 5 1 3 2 6 4 5
T 4 4 4 4 4 4 4 4
i i i i i i i i i
I I I I I I I I I
I]]]]] I I I
I]]]]] I I I
| ! ! ! !]]]]
Hall sensor A
T1(A) P T2 (A)
>e

| HW INTF—— ol > Hall sensor A Hall sensor B . |

Code Generation [> Hall sensor B
SubSystem - > Hall sensor C

L T1(B)

I
|

el

-+ L
|

T2 (B)

A

—
—

Hall sensor C |_
T Hardware interrupt !" (0 i T2(0) J
[= T
I I

]

]

I

Hall sensor value "

t t

Use this procedure to implement the algorithm to service the hardware interrupts:

1 Use the Simulink browser to add the eCAP block from Embedded Coder Support Package for
Texas Instruments C2000 Processors > C280x.

10-5

10 Using Hall Validity and Hall Decoder Blocks

10-6

C28x
TS > 1)
SCAP eCAP_Out
Cutport
S-Function

Place this block inside a subsystem named Code generation. This subsystem captures the time
elapsed (timer count) between two Hall value changes for a single Hall sensor.

Use the Simulink browser to add the Hall Validity block from Motor Control Blockset > Sensor
Decoders. Connect the Code generation subsystem to the Cnt input port of the Hall Validity

block.
Invalid P
3 Hallval
SpdCnt [»
3 PrevHallval
Hall Dir >
Validity
eCAP_Out »{ Crit
Spdval [
Cade generation
SubSystem
3 PrevDir
HallChng [»
Hall Validity
SubSystem

Create these global variables (by using Data Store Memory, Data Store Read, and Data Store
Write blocks):

GlobalHallState — Stores the Hall state (Hall sensor A + Hall sensor B + Hall sensor C).

GlobalDirection — Stores the direction of the rotor spin (either +1 or -1 indicating positive or
negative direction of rotation, respectively).

GlobalSpeedCount — Stores the eCAP timer output.

GlobalSpeedValidity — Stores either 0 (indicating an invalid speed count) or 1 (indicating a
valid speed count).

HallStateChangeFlag — Stores 1 (to indicate that a Hall value has changed) or 0 (to indicate
that speed and position computation for the previous Hall state (Hall sensor A + Hall sensor B
+ Hall sensor C) is complete).

Connect these variables to the Hall Validity block as shown in the following figure:

How to Use Hall Validity and Hall Decoder Blocks

GlobalHallState —I—’
DataStoreRead PrevHallVal

eCAP_Out » Cnt

Cade generation
SubSystem

GlobalDirection

DataStoreRead

4

Invalid »—]
J Hallval _
Terminator
SpdCnt » GlobalSpeedCount
DataStore\Write
Hall Dir P GlobalDirection
Validity
DataStoreWrite
Spdval P GlobalSpeedValidity
DataStareWrite
| PrevDir
HallChng 4% HallStateChangeFlag
DataStoreWrite
Hall Walidity
SubSystem

Use the Simulink browser to add the Memory Copy block from Embedded Coder Support
Package for Texas Instruments C2000 Processors > Memory Operations. In the Memory
Copy block parameters dialog box, set the Copy from parameter to Specified source code
symbol. Use the Source code symbol parameter to specify the variable name available in the
source code symbol table that stores the current Hall state.

EJ B
Memory Copy (mask) (link)

Read from and/or write to sequential locations of the target
memory. Each location is specified by the start address and offset.
The number of the elements to be copied is specified by the data |
length, while the stride determines the relative location of the

| next element to be copied. The start addresses and offsets can be |

changed during run-time.

Memory may be read andfor written during initialization,
termination and at every sample time. You can specify custom C
source code to be inserted before and/or after the memory write/
read instruction(s). Quick DMA (QDMA) data copy can be used on

supported DSP platforms.

Source Destination Options

Copy from: |Specified source code symbol

Source code symbol:
|&GpioDataRegs. GPADAT.all

Data type: uint32
Data length:

1
[] Use offset when reading
Stride:

1

OK Cancel Help

Apply

10-7

10 Using Hall Validity and Hall Decoder Blocks

5 Connect the Memory Copy block output to an outport.

>

uint32 » -
[S”,

Bitwise Qy = Qu == 24
dst » AND Wy = Vot 2824
0x 7000000 Ey =Eu
Memory Col =
el S-Function ArithShift
S-Function

DataTypeConversion

Qutport

Place these blocks inside a subsystem named CodeGen. Therefore, this subsystem outputs the

current Hall state.

6 Connect the CodeGen subsystem to the Hall Validity block as shown in the following figure:

GlobalHallState

DataStoreWrite

P HallVal

CodeGen

SubSystem GlobalHallState —I—’
DataStoreRead PrevHallVal

eCAP_Out

Code generation
SubSystem

| PrevDir

GlobalDirection

DataStoreRead

Invalid

SpdCnt

Hall Dir

Validity

Spdval

HallChng

[—
L |

Terminator

|

GlobalSpeedCount

DataStoreWrite

GlobalDirection

|

DataStoreWrite

GlobalSpeedValidity

|

DataStore\Write

|

HallStateChangeFlag |

Hall Validity
SubSystem

DataStoreWWrite:

7 Integrate the Hall Validity block and the entire hardware interrupt service algorithm into a single
subsystem named Hall sensor A. Add the Trigger block from the Simulink > Ports &
Subsystems library to this subsystem and set the Trigger type parameter to function-call.
Rename the trigger block as eCAP1 Interrupt.

10-8

How to Use Hall Validity and Hall Decoder Blocks

ff)
eCAP1 Interrupt

GlobalHallState

DataStoreWrite
Invalid »—]
1 | Hall\al]
Terminator
CodeGen -
SubSystem GlobalHallState —I—’ SpdCnt GlobalSpeedCount
DataStoreRead PrevHallval DataStore\Write

Hall Dir GlobalDirection
Validity —_—

DataStore\Write

eCAP_Out p Cnt

SpdVal GlobalSpeedValidity
Code generation

DataStoreWrite

SubSystem
1 PrevDir p—
HallChng 4>| HallStateChangeFlag |
GlobalDirection DataStore\Write
Hall Validity
DataStoreRead SubSystem

The trigger block acts as the hardware interrupt signal for Hall sensor A. When the Hall sensor
A subsystem receives an interrupt (indicating a Hall sensor A value change), the hardware
interrupt service algorithm resets the eCAP timer to output the recorded timer count (during the
previous Hall state) and also captures the current Hall state.

8 Similarly, create the subsystems Hall sensor B and Hall sensor C containing the hardware
interrupt service algorithms for Hall sensors B and C, respectively. Connect these subsystems to
the Code Generation subsystem that you created in the section Generate Interrupts for Hall
Value Transitions.

10-9

10 Using Hall Validity and Hall Decoder Blocks

10-10

HW_INT

Code Generation

eCAP1 Interrupt()
SubSystem

Demux

Hall Sensor A
Demux

SubSystem

o

eCAP2 Interrupt()

Hall Sensor B
SubSystem

h 4
eCAPI Interrupt()

Hall Sensaor C
SubSystem

Compute Electrical Position and Mechanical Speed

Use the following procedure to add the position and speed computation algorithm to the Current
Control subsystem. For more details, see the model mcb _pmsm foc hall f28069m.slx as a
reference.

1 Add the algorithm used in steps 4 and 5 of the section Service Generated Interrupts in the
current controller. The algorithm enables the current controller to read the current Hall state.
Add the Trigger block from the Simulink > Ports & Subsystems library to this subsystem and
set the Trigger type parameter to function-call. Place this algorithm in a subsystem.

f{)

function

TriggerPort
Bitwise Qy = Qu >> 24
dst » AND B Vy=Vut2n24 » ey
0x7000000 Ey =Eu = HallSignal
Memory Copy S-Function ArithShift DataTypeConversion Outport
S-Function

2 Use the Memory Copy blocks (from Embedded Coder Support Package for Texas
Instruments C2000 Processors > Memory Operations) to read the three eCAP timer counter
values. Add the Trigger block from the Simulink > Ports & Subsystems library to this
subsystem and set the Trigger type parameter to function-call. Place this algorithm in a
subsystem.

How to Use Hall Validity and Hall Decoder Blocks

function
TriggerPort
dst L
Memory Copy
S-Function

dst B min {1)

Memory Copy 5 u
5-Function utport
dst L
Memory Copy
S-Function
MinhMax

3 Integrate the two function-call subsystems (that you crated in steps 1 and 2), global variables,

and an integrity check algorithm for eCAP counter and Hall state values into a subsystem named
Atomic Hall Reading.

10-11

10 Using Hall Validity and Hall Decoder Blocks

S-Function

Disable Interrupts
for Atomic Read
SubSystem

h
functioni)
HallSignal P HallSignal
Halls 1)
SubSystem P Counterin HallState
Outport
Integrity_Check U
SubSystem
function|)
u 2)
Count
SubSystem Outpaort
GlobalSpeedCount {3)
S — SpeedCount
DataStoreRead
Outport
GlobalDirection 4)
—_— Dir
DataStoreRead Outport
GlobalSpeed\Validity 5)
—_———— SpeedValidity
DataStoreRead Outport
HallStateChangeFlag 6)
—_— Hallchange
DataStoreRead Outport

4 Use the Simulink browser to add the Hall Speed and Position block from Motor Control
Blockset > Sensor Decoders. Connect this block, the Atomic Hall Reading subsystem, and
the HallStateChangeFlag variable as shown in the following figure:

HallState
Count
SpeedCount
Dir
SpeedValidity
Hallchange

Atomic Hall Reading
SubSystem

10-12

Pos_PU
Outport

1 HallVal

P Cnt 8

® SpdCnt Han

| Dir Decoder Yy

» Spdval

»| HallChng HallChngRst
Hall Speed and Position

SubSystem

’JI HallStateChangeFlag |

DataStoreWrite

> 2)
Speed_PU
Outport

How to Use Hall Validity and Hall Decoder Blocks

5 Use the Simulink browser to add the Mechanical to Electrical Position block from Motor Control
Blockset > Sensor Decoders. In the block parameters dialog box enter the variable
pmsm.PositionOffset for the Mechanical offset parameter.

L;.l

Mechanical to Electrical Position

Compute electrical position of the rotor based on the mechanical

position.

The block accepts mechanical position and offset (deviation of
electrical zero position from mechanical zero position). Unit of

offset is same as that of input mechanical position.

The block outputs electrical position whose range is same as

range of input mechanical position.

Parameters

Number of pole pairs: |1
Input mechanical angle unit Per unit

Offset input type: Specify via dialog

| Mechanical offset: |pmsm.PositionOffset |

| Input data type | dataType

Apply

The variable pmsm.PositionOffset (available in the model initialization script associated with the
reference model mcb_pmsm_foc _hall f28069m.s1x) stores the offset value for the Hall
sensor. We use the Mechanical to Electrical Position to apply this offset to the computed

electrical position value.

HallState
Count
SpeedCount
Dir
SpeedValidity

Hallchange

m

Mech2Elec
Position

a8

i

h 4

b

h 4

Atomic Hall Reading
SubSystem

HallVal

Cni BE
SpdCnt Hall

Dir Decoder W,
Spdva

HallChng HallChngRst

SubSystem

Pos_PU

Qutport

4>| HallStateChangeFlag |

Hall Speed and Position
SubSystem

DataStoreWrite

> 2)
Speed_PU
Outport

6 Add a glitch filter to the computed speed count value. This filter rejects low values of computed
speed count. This enables the motor to run at speeds greater than ten times the base speed.

10-13

10 Using Hall Validity and Hall Decoder Blocks

HallState

8 Mech2Elec

] m Position %

Count
SpeedCount
Dir

SpeedValidity

Hallchange

Atomic Hall Reading

Hallval] SubSystem Pos_PU

Cnt B Outport

SpdCnt Hall

Dir Decoder e -;(7)

SpdVval R — Speed_PU
HallChng HaIIChngRst4>| HallStateChangeFlag | Outport

SubSystem

60/ (pmsm

Glitch Filter
SubSystemn

SubSystem

Hall Speed and Position
SubSystem

DataStoreWrite

7 Add the resulting algorithm inside the Current Control/Input Scaling subsystem of the
reference Simulink model. For more details, see mcb_pmsm_foc_hall f28069m.s1x.

10-14

	Product Overview
	Motor Control Blockset Product Description

	Model Configuration Parameters
	Model Configuration Parameters
	Solver Configuration
	ADC Interface Configuration
	PWM Interface Configuration
	Hall Sensor Interface Configuration
	Quadrature Encoder Interface Configuration
	Serial Communication Interface Configuration

	Estimate Control Gains from Motor Parameters
	Estimate Control Gains and Use Utility Functions
	Field-Oriented Control Autotuner
	Simulink Control Design
	Model Initialization Script

	Implement Motor Speed Control by Using Field-Oriented Control (FOC)
	Field-Oriented Control (FOC)
	Permanent Magnet Synchronous Motor (PMSM)
	AC Induction Motor (ACIM)

	Six-Step Commutation
	Direct Torque Control (DTC)
	Flux and Torque Estimation

	Run 3-Phase AC Motors in Open-Loop Control and Calibrate ADC Offset
	Tune Control Parameter Gains in Hardware and Validate Plant
	Tune PI Controllers Using Field Oriented Control Autotuner
	Field-Oriented Control of PMSM Using Hall Sensor
	Field-Oriented Control of PMSM Using Quadrature Encoder
	Field-Weakening Control (with MTPA) of PMSM
	Sensorless Field-Oriented Control of PMSM
	Field-Oriented Control of PMSM Using SI Units
	Hall Offset Calibration for PMSM Motor
	Monitor Resolver Using Serial Communication
	Quadrature Encoder Offset Calibration for PMSM Motor
	Model Switching Dynamics in Inverter Using Simscape Electrical
	Control PMSM Loaded with Dual Motor (Dyno)
	Field-Oriented Control of Induction Motor Using Speed Sensor
	Sensorless Field-Oriented Control of Induction Motor
	Tune PI Controllers Using Field Oriented Control Autotuner Block on Real-Time Systems
	Six-Step Commutation of BLDC Motor Using Sensor Feedback
	Hall Sensor Sequence Calibration of BLDC Motor
	Position Control of PMSM Using Quadrature Encoder
	Integrate MCU Scheduling and Peripherals in Motor Control Application
	Partition Motor Control for Multiprocessor MCUs
	Frequency Response Estimation of PMSM Using Field-Oriented Control
	MATLAB Project for FOC of PMSM with Quadrature Encoder
	Estimate Initial Rotor Position Using Pulsating High-Frequency and Dual-Pulse Methods
	Algorithm-Export Workflows for Custom Hardware
	Estimate PMSM Parameters Using Recommended Hardware
	Field-Oriented Control of PMSM Using Reinforcement Learning
	Estimate Induction Motor Parameters Using Recommended Hardware
	Estimate PMSM Parameters Using Custom Hardware
	Tune PI Controllers (in Field-Weakening Control Mode) Using FOC Autotuner Block
	Field-Oriented Control (FOC) of PMSM Using Hardware-In-The-Loop (HIL) Simulation
	Direct Torque Control of PMSM Using Quadrature Encoder or Sensorless Flux Observer
	Determine Power Losses and THD for PWM Modulation Methods
	Run Field Oriented Control of PMSM Using Model Predictive Control

	Estimate Motor Parameters Using Motor Control Blockset Parameter Estimation Tool
	Estimate Motor Parameters Using Motor Control Blockset Parameter Estimation Tool

	Concepts
	Host-Target Communication
	Host Model
	Target Model
	Serial Communication Blocks
	Fast Serial Data Monitoring
	Find Communication Port
	Add Debug Signals from Target Hardware

	Open-Loop and Closed-Loop Control
	Open-Loop Motor Control
	Closed-Loop Motor Control
	Open-Loop to Closed-Loop Transitions

	Current Sensor ADC Offset and Position Sensor Calibration
	Current Sensor ADC Offset Calibration
	Position Sensor Offset Calibration for Quadrature Encoder and Hall Sensor

	Per-Unit System
	Per-Unit System
	Per-Unit System and Motor Control Blockset
	Why Use Per-Unit System Instead of Standard SI Units

	Program Control Flow of Motor Control Blockset Examples
	ADC-PWM Synchronization
	Motor Speed and Position Measurement
	Serial Communication

	Hardware Connections
	Hardware Connections
	F28069 control card configuration
	LAUNCHXL-F28069M and LAUNCHXL-F28379D Configurations
	TMDSRSLVR C2000 Resolver to Digital Conversion Kit

	Algorithm Export Workflows for Custom Hardware
	Open-Loop Control and ADC Offset Calibration
	Generate Code For Control Algorithm Using Embedded Coder
	Obtain C Code For Hardware Drivers
	Integrate Control Algorithm Code With Driver Code
	Deploy Integrated Code to Hardware
	Control Motor Using Host Simulink Model

	Quadrature Encoder Offset Calibration
	Generate Code For Control Algorithm Using Embedded Coder
	Obtain C Code For Hardware Drivers
	Integrate Control Algorithm Code With Driver Code
	Deploy Integrated Code to Hardware
	Control Motor Using Host Simulink Model

	Field-Oriented Control
	Generate Code For Control Algorithm Using Embedded Coder
	Obtain C Code For Hardware Drivers
	Integrate Control Algorithm Code With Driver Code
	Deploy Integrated Code to Hardware
	Control Motor Using Host Simulink Model

	Modeling Guidelines for Motor Control Applications
	Create and Validate Model for Motor Control System

	Using Hall Validity and Hall Decoder Blocks
	How to Use Hall Validity and Hall Decoder Blocks
	Configure eCAP Pins
	Generate Interrupts for Hall Value Transitions
	Service Generated Interrupts
	Compute Electrical Position and Mechanical Speed

